• Title/Summary/Keyword: Plastic Constraint

Search Result 93, Processing Time 0.022 seconds

Constraint-based fracture mechanics analysis of cylinders with internal circumferential cracks

  • Bach, Michael;Wang, Xin
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.131-147
    • /
    • 2013
  • In this paper, constraint-based fracture mechanics analyses of hollow cylinders with internal circumferential crack under tensile loading are conducted. Finite element analyses of the cracked cylinders are carried out to determine the fracture parameters including elastic T-stresses, and fully-plastic J-integrals. Linear elastic finite element analysis is conducted to obtain the T-stresses, and elastic-plastic analysis is conducted to obtain the fully plastic J-integrals. A wide range of cylinder geometries are studied, with cylinder radius ratios of $r_i/r_o$ = 0.2 to 0.8 and crack depth ratio a/t = 0.2 to 0.8. Fully plastic J-integrals are obtained for Ramberg-Osgood power law hardening material of n = 3, 5 and 10. These fracture parameters are then used to construct conventional and constraint-based failure assessment diagrams (FADs) to determine the maximum load carrying capacity of cracked cylinders. It is demonstrated that these tensile loaded cylinders with circumferential cracks are under low constraint conditions, and the load carrying capacity are higher when the low constraint effects are properly accounted for, using constraint-based FADs, comparing to the predictions from the conventional FADs.

A Comparative Study of the Incompressibility Constraint on the Rigid Plastic Finite Element Method (강소성 유한요소법에서 비압축성조건의 비교 연구)

  • 이상재;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • The governing functional in plastic deformation has to satisfy the incompressibility constraint. This incompressibility constraint imposed on velocity fields can be removed by introducing either Lagrange multiplier or the penalty constant into the functional. In this study, two-dimensional rigid plastic FEM programs using these schemes were developed. These two programs and DEFORM were applied in a cylinder upsetting and a closed die forging to compare the values of load, local mean stress and volume loss. As the results, the program using Lagrange multiplier obtained a more exact and stable solution, but it took more computational time than the program using the penalty constant. Therefore, according to user's need, one of these two programs can be chosen to simulate a metal forming processes.

  • PDF

Evaluation of the Plastic Region Using Recrystallization Heat Treatment for Constraint Effect with STS 316L (STS 316L의 재결정 열처리법을 이용한 구속효과 평가)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.539-544
    • /
    • 2009
  • The constraint effect $A_2$ has to be evaluated within plastic region near crack tip front using opening displacement. Plastic boundary and stress or strain conditions in the vicinity of the crack tip using recrystallization heat treatment was represented. It was found that the plastic deformation boundary by recrystallization heat treatment method was the true strain of ${\epsilon}t$ = 0.05mm/mm. With the estimation of constraint effects $A_2$, the region of proper displacement measurement point near crack tip was between 0mm and 1mm distance toward direction of crack propagation, and was between 1mm to 3mm distance toward direction of load line.

Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding (완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분)

  • Lee, Hyung-Yil;Kim, Yong-Bom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

Experimental Constraint Effect $A_{2}$, Values depending on Displacement according to measuring Positions near Crack Front. (균열선단 근방 변위측정 위치에 따른 구속효과 $A_{2}$)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.25-30
    • /
    • 2004
  • The magnitude of constraint effect $A_{2}$ values were experimentally estimated using displacement according to measuring positions on the non-linear elastic plastic fracture toughness estimate. For 25.4 mm thickness SS400 steel CT specimen, constraint effect $A_{2}$ values we re dependent on specimen configuration and on measured displacement near crack front. Commonly, Estimating constraint effect $A_{2}$ measuring position for displacement should be existed inside plastic region. Therefore, the ${\delta}_{5}$ method was not reliable for evaluation of constraint effect $A_{2}$ values because measuring position for displacement is in elastic region at crack growth initiation in this paper.

  • PDF

Experimental Behaviors of Constraint Effect A2 depending on Opening Displacement Measurement near Crack Front for SS400. (실험적 변위측정위치에 따른 구속효과 A2의 거동)

  • Han, Min-Su;Jang, Seok-Ki
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.345-350
    • /
    • 2008
  • The magnitude of constraint effect $A_2$ value was experimentally estimated by using crack tip opening displacement(CTOD) between elastic and plastic regions near crack tip front for CT specimen with $25.4t{\ss}{\AE}$ SS400 steel. The constraint effect, $A_2$ was dependent on specimen configuration and on the measured positions of CTOD near crack front. $A_2$ should be estimated using the opening displacement calculated within crack front plastic region. If not, it's not reliable to evaluate of constraint effect at crack growth initiation in this paper.

Experimental Behaviors of the Constraint Effects A2 Depending on Displacement at Various Measuring Positions near Crack Front for STS 316L CT Specimen (균열선단 변위측정위치에 따른 STS 316L의 구속효과 A2 거동)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.533-538
    • /
    • 2009
  • The magnitude of constraint effect $A_2$ values on the non-linear elastic plastic fracture toughness was experimentally estimated by using displacement at various measuring positions near crack tip. Constraint effect $A_2$ value was dependent on specimen configuration and on the measured displacement near crack front. The crack tip opening displacement in the vicinity of the crack tip front should be estimated within plastic region when appropriately constraint effect was calculated. It was found that the magnitude of constrain effect |$A_2$| is below 8.0 at the crack tip. But an appropriate location to measure the effective constraint effects $A_2$ at the critical value of J that crack initiation is characterizable by is r = 2mm and ${\theta}=90^{\circ}$ away from original crack tip, and the constraint effect |$A_2$| estimated is 5.3.

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen (시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화)

  • Kim, Jin-Su;Cho, Soo-Man;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF