• Title/Summary/Keyword: Plasmonic annealing

Search Result 7, Processing Time 0.025 seconds

Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors (금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서)

  • Seongmin Jeong;Yun Sik Hwang;Yu Mi Woo;Yong Jun Cho;Chan Hyeok Kim;Min Gi An;Ho Seok Seo;Chan Hyeon Yang;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.

Plasmonic Effect on Graphene Metal Hybrid Films

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.468-468
    • /
    • 2013
  • Self-assembled silver nanoparticles were synthesized on a graphene film to investigate plasmonic effect. Graphene was synthesized on glass substrate using chemical vapor deposition method and transfer process. Silver nanoparticles were formed using thermal evaporator and post-annealing process. The shape of silver nanoparticles was measured using a scanning electron microscopy. The resonance wavelength of plasmonic effect on graphene-silver nanoparticles was measured using transmittance spectra. The plasmon resonance wavelength was increased from 400 nm to 424 nm according to the lateral dimension of silver nanoparticles. Also we confirmed a strong plasmon effect form Raman spectra, which were measured on graphene-silver nanoparticles. The result shows that plasmon resonance wavelength could be controlled by lateral dimension of silver nanoparticles, and transparent conductive films based on plasmonic graphene could be developed.

  • PDF

The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping

  • Lu, Yang;Zhang, Hui;Mei, Ting
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.

Ag Nanoparticle Self-Generation and Agglomeration via Laser-Induced Plasmonic Annealing for Metal Mesh-Based Transparent Wearable Heater (레이저 기반 플라즈모닉 어닐링을 통한 은 나노입자 자가 생성 및 소결 공정과 이를 활용한 메탈메쉬 전극 기반 투명 웨어러블 히터)

  • Hwang, Yun Sik;Nam, Ui Yeon;Kim, Yeon Uk;Woo, Yu Mi;Heo, Jae Chan;Park, Jung Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.439-444
    • /
    • 2022
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) is a promising technology to fabricate flexible conducting electrodes, since it provides instantaneous, simple, and scalable manufacturing strategies without requiring costly facilities and complex processes. However, the metal NPs are quite expensive because complicated synthesis procedures are needed to achieve long-term reliability with regard to chemical deterioration and NP aggregation. Herein, we report laser-induced Ag NP self-generation and sequential sintering process based on low-cost Ag organometallic material for demonstrating high-quality microelectrodes. Upon the irradiation of laser with 532 nm wavelength, pre-baked Ag organometallic film coated on a transparent polyimide substrate was transformed into a high-performance Ag conductor (resistivity of 2.2 × 10-4 Ω·cm). To verify the practical usefulness of the technology, we successfully demonstrated a wearable transparent heater by using Ag-mesh transparent electrodes, which exhibited a high transmittance of 80% and low sheet resistance of 7 Ω/square.

Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films

  • Choi, Hyung-Y.;Guerrero, Michael S.;Aquino, Michael;Kwon, Chu-Hee;Shon, Young-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.291-297
    • /
    • 2010
  • This article introduces a facile nanoparticle self-assembly/annealing method for the preparation of nanoisland films. First, nanoparticle-polymer multilayer films are prepared with layer-by-layer assembly. Nanoparticle multilayer films are then annealed at $~500^{\circ}C$ in air to evaporate organic matters from the films. During the annealing process, the nanoparticles on the solid surface undergo nucleation and coalescence, resulting in the formation of nanostructured gold island arrays. By controlling the overall thickness (number of layers) of nanoparticle multilayer films, nanoisland films with various island density and different average sizes are obtained. The surface property of gold nanoisland films is further controlled by the self-assembly of alkanethiols, which results in an increased surface hydrophobicity of the films. The structure and characteristics of these nanoisland film arrays are found to be quite comparable to those of nanoisland films prepared by vacuum evaporation method. However, this self-assembly/annealing protocol is simple and requires only common laboratory supplies and equipment for the entire preparation process.

Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells

  • Dzhafarov, Tayyar D.;Pashaev, Arif M.;Tagiev, Bahadur G.;Aslanov, Shakir S.;Ragimov, Shirin H.;Aliev, Akper A.
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.133-141
    • /
    • 2015
  • Influence of Ag nanoparticles on optical and photovoltaic properties of, silicon substrates, silicon solar cells and glass have been investigated. Silver nanoparticles have been fabricated by evaporation of thin Ag layers followed by the thermal annealing. The surface plasmon resonance peak was observed in the absorbance spectrum at 470 nm of glass with deposited silver nanoparticles. It is demonstrated that deposition of silver nanoparticles on silicon substrates was accompanied with a significant decrease in reflectance at the wavelength 360-1100 nm and increase of the absorption at wavelengths close to the band gap for Si substrates. We studied influence of Ag nanoparticles on photovoltaic characteristics of silicon solar cells without and with common use antireflection coating (ARC). It is shown that silver nanoparticles deposited onto the front surface of the solar cells without ARC led to increase in the photocurrent density by 39% comparing to cells without Ag nanoparticles. Contrary to this, solar cells with Ag nanoparticles deposited on front surface with ARC discovered decrease in photocurrent density. The improved performance of investigated cells was attributed to Ag-plasmonic excitations that reduce the reflectance from the silicon surface and ultimately leads to the enhanced light absorption in the cell. This study showed possibility of application of Ag nanoparticles for the improvement of the conversion efficiency of waferbased silicon solar cells instead of usual ARC.

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.