• Title/Summary/Keyword: Plasma-enhanced atomic layer deposition

Search Result 74, Processing Time 0.037 seconds

Low Temperature Preparation of Hafnium Oxide Thin Film for OTFT by Atomic Layer Deposition

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.247-250
    • /
    • 2008
  • Hafnium dioxide ($HfO_2$) thin film as a gate dielectric for organic thin film transistors is prepared by plasma enhanced atomic layer deposition (PEALD). Mostly crystalline of $HfO_2$ film can be obtained with oxygen plasma and with water at relatively low temperature of $200^{\circ}C$. $HfO_2$ was deposited as a uniform rate of $1.2\;A^{\circ}$/cycle. The pentacene TFT was prepared by thermal evaporation method with hafnium dioxide as a gate dielectric. The electrical properties of the OTFT were characterized.

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

Hafnium Oxide Nano-Film Deposited on Poly-Si by Atomic Layer Deposition

  • Wei, Hung-Wen;Ting, Hung-Che;Chang, Chung-Shu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.496-498
    • /
    • 2005
  • We reported that high dielectric hafnium oxide nano-film deposited by thermal atomic layer deposition on the poly-silicon film (poly-Si). The poly -Si film was produced by plasma enhanced chemical vapor deposition and excimer laser annealing. We used the hafniu m chloride ($HfCl_4$) and water as the precursors and analyzed the hafnium oxide film by transmission electron microscope and secondary ion mass spectrometer. Hafnium oxide produced by the ALD method showed very good coverage on the rough surface of poly-Si film. While deposited with 200 cycles, these hafnium oxide films revealed a relatively smooth surface and good uniformity, but the cumulative roughness produced by the incomplete reaction was apparent when the amount of deposition cycle increased to 600 cycles.

  • PDF

Optimization of PEALD-Ru Process using Ru(EtCp)2 (Ru(EtCp)2 전구체를 이용한 PEALD Ru 공정 최적화에 관한 연구)

  • Kwon, Se-Hun;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • Ru films were successfully prepared by plasma-enhanced atomic layer deposition (PEALD) using $Ru(EtCp)_2$ and $NH_3$ plasma. To optimize Ru PEALD process, the effect of growth temperature, $NH_3$ plasma power and $NH_3$ plasma time on the growth rate and preferred orientation of the deposited film was systemically investigated. At a growth temperature of $270^{\circ}C$ and $NH_3$ plasma power of 100W, the saturated growth rate of 0.038 nm/cycle was obtained on the flat $SiO_2$/Si substrate when the $Ru(EtCp)_2$ and $NH_3$ plasma time was 7 and 10 sec, respectively. When the growth temperature was decreased, however, an increased $NH_3$ plasma time was required to obtain a saturated growth rate of 0.038 nm/cycle. Also, $NH_3$ plasma power higher than 40 W was required to obtain a saturated growth rate of 0.038 nm/cycle even at a growth temperature of $270^{\circ}C$. However, (002) preferred orientation of Ru film was only observed at higher plasma power than 100W. Moreover, the saturation condition obtained on the flat $SiO_2$/Si substrate resulted in poor step coverage of Ru on the trench pattern with an aspect ratio of 8:1, and longer $NH_3$ plasma time improved the step coverage.

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Plasma Oxidation Effect on Ultralow Temperature Polycrystalline Silicon TFT on Plastic Substrate

  • Kim, Yong-Hae;Moon, Jae-Hyun;Chung, Choong-Heui;Yun, Sun-Jin;Park, Dong-Jin;Lim, Jung-Wook;Song, Yoon-Ho;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1122-1125
    • /
    • 2006
  • The TFT performances were enhanced and stabilized by plasma oxidation of the polycrystalline Si surface prior to the plasma enhanced atomic layer deposition of $Al_2O_3$ gate dielectric film. We attribute the improvement to the formation of a high quality oxide interface layer between the gate dielectric film and the poly-Si film. The interface oxide has a predominant effect on the TFT's characteristics, and is regulated by the gap distance between the electrode and the polycrystalline Si surface.

  • PDF

Ultra low temperature polycrystalline silicon thin film transistor using sequential lateral solidification and atomic layer deposition techniques

  • Lee, J.H.;Kim, Y.H.;Sohn, C.Y.;Lim, J.W.;Chung, C.H.;Park, D.J.;Kim, D.W.;Song, Y.H.;Yun, S.J.;Kang, K.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.305-308
    • /
    • 2004
  • We present a novel process for the ultra low temperature (<150$^{\circ}C$) polycrystalline silicon (ULTPS) TFT for the flexible display applications on the plastic substrate. The sequential lateral solidification (SLS) was used for the crystallization of the amorphous silicon film deposited by rf magnetron sputtering, resulting in high mobility polycrystalline silicon (poly-Si) film. The gate dielectric was composed of thin $SiO_2$ formed by plasma oxidation and $Al_2O_3$ deposited by plasma enhanced atomic layer deposition. The breakdown field of gate dielectric on poly-Si film showed above 6.3 MV/cm. Laser activation reduced the source/drain resistance below 200 ${\Omega}$/ㅁ for n layer and 400 ${\Omega}$/ㅁ for p layer. The fabricated ULTPS TFT shows excellent performance with mobilities of 114 $cm^2$/Vs (nMOS) and 42 $cm^2$/Vs (pMOS), on/off current ratios of 4.20${\times}10^6$ (nMOS) and 5.7${\times}10^5$ (PMOS).

  • PDF