DOI QR코드

DOI QR Code

Optimization of PEALD-Ru Process using Ru(EtCp)2

Ru(EtCp)2 전구체를 이용한 PEALD Ru 공정 최적화에 관한 연구

  • Kwon, Se-Hun (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Jeong, Young-Keun (National Core Research Center for Hybrid Materials Solution, Pusan National University)
  • 권세훈 (부산대학교 하이브리드소재솔루션 국가핵심연구센터) ;
  • 정영근 (부산대학교 하이브리드소재솔루션 국가핵심연구센터)
  • Received : 2013.01.11
  • Accepted : 2013.02.18
  • Published : 2013.02.28

Abstract

Ru films were successfully prepared by plasma-enhanced atomic layer deposition (PEALD) using $Ru(EtCp)_2$ and $NH_3$ plasma. To optimize Ru PEALD process, the effect of growth temperature, $NH_3$ plasma power and $NH_3$ plasma time on the growth rate and preferred orientation of the deposited film was systemically investigated. At a growth temperature of $270^{\circ}C$ and $NH_3$ plasma power of 100W, the saturated growth rate of 0.038 nm/cycle was obtained on the flat $SiO_2$/Si substrate when the $Ru(EtCp)_2$ and $NH_3$ plasma time was 7 and 10 sec, respectively. When the growth temperature was decreased, however, an increased $NH_3$ plasma time was required to obtain a saturated growth rate of 0.038 nm/cycle. Also, $NH_3$ plasma power higher than 40 W was required to obtain a saturated growth rate of 0.038 nm/cycle even at a growth temperature of $270^{\circ}C$. However, (002) preferred orientation of Ru film was only observed at higher plasma power than 100W. Moreover, the saturation condition obtained on the flat $SiO_2$/Si substrate resulted in poor step coverage of Ru on the trench pattern with an aspect ratio of 8:1, and longer $NH_3$ plasma time improved the step coverage.

Keywords

References

  1. A. Jain, K. M. Chi, T. T. Kodas and M. J. Hampden-Smith: J. Electrochem. Soc., 140 (1993) 1434. https://doi.org/10.1149/1.2221574
  2. S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros and W. A. Lanford: Thin Solid Films, 236 (1993) 257. https://doi.org/10.1016/0040-6090(93)90680-N
  3. S. P. Murarka: Mater. Sci. Eng. R, 19 (1997) 87. https://doi.org/10.1016/S0927-796X(97)00002-8
  4. J. Torres: Appl. Surf. Sci, 91 (1995) 112. https://doi.org/10.1016/0169-4332(95)00105-0
  5. Y. J. Lee, B. S. Suh, M. S. Kwon and C. O. Park: J. Appl. Phys., 85 (1999) 1927. https://doi.org/10.1063/1.369172
  6. S. H. Kwon, O. K. Kwon, J. S. Min and S. W. Kang: J. Electrochem. Soc., 153 (2006) G578. https://doi.org/10.1149/1.2193335
  7. H. Kim, C. Cabral. Jr, C. Lavoie and S. M. Rossnagel: J. Vac. Sci. Technol. B, 20 (2002) 1321. https://doi.org/10.1116/1.1486233
  8. W. F. Wu, K. L. Ou, C. P. Chou and C. C. Wu: J. Electrochem. Soc., 150 (2003) G83. https://doi.org/10.1149/1.1531974
  9. J. Y. Kim, Y. D. Kim and H. T. Jeon: Jpn. J. Appl. Phys., 42 (2003) L414. https://doi.org/10.1143/JJAP.42.L414
  10. K. E. Elers, V. Saanila, W. M. Li, P. J. Soininen, J. T. Kostamo, S. Haukka, J. Juhanoja and W. F. A. Besling: Thin Solid Films, 434 (2003) 94. https://doi.org/10.1016/S0040-6090(03)00501-7
  11. A. Furuyama, N. Hosoi and Y. Ohsihita: J. Appl. Phys, 78 (1995) 5989. https://doi.org/10.1063/1.360604
  12. T. Hara and K. Sakata: Electrochem. Solid-State Lett., 4 (2001) G77. https://doi.org/10.1149/1.1399876
  13. O. K. Kwon, J. H. Kim, H. S. Park and S. W. Kang: J. Electrochem. Soc., 151 (2004) G109. https://doi.org/10.1149/1.1640633
  14. O. K. Kwon, S. H. Kwon, H. S. Park and S. W. Kang: Electrochem. Solid-State Lett., 7 (2004) C46. https://doi.org/10.1149/1.1648612
  15. D. Josell, D. Wheeler, C. Witt and T. P. Moffat: Electrochem. Solid-State Lett., 6 (2003) C143. https://doi.org/10.1149/1.1605271
  16. Y. Matsui, M. Hiratani, T. Nabatame, Y. Shimamoto and S. Kimura : Electrochem. Solid-State Lett., 4 (2001) C9 https://doi.org/10.1149/1.1340916
  17. M. Abe, M. Ueki, M. Tada, T. Onodera, N. Furuake, K. Shimura, S. Saito and Y. Hayashi: International Interconnect Technology Conference (IITC), IEEE (2007) 4-6.