• Title/Summary/Keyword: Plasma uniformity

Search Result 214, Processing Time 0.033 seconds

Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses

  • Jeong, Young-Seon;Hwang, Sangheum;Ko, Young-Don
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.392-400
    • /
    • 2015
  • Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufacturing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by using OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extraction from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES.

Research on the Multi-electrode Plasma Discharge for the Large Area PECVD Processing

  • Lee, Yun-Seong;You, Dae-Ho;Seol, You-Bin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.478-478
    • /
    • 2012
  • Recently, there are many researches in order to increase the deposition rate (D/R) and improve film uniformity and quality in the deposition of microcrystalline silicon thin film. These two factors are the most important issues in the fabrication of the thin film solar cell, and for the purpose of that, several process conditions, including the large area electrode (more than 1.1 X 1.3 (m2)), higher pressure (1 ~ 10 (Torr)), and very high frequency regime (VHF, 40 ~ 100 (MHz)), have been needed. But, in the case of large-area capacitively coupled discharges (CCP) driven at frequencies higher than the usual RF (13.56 (MHz)) frequency, the standing wave and skin effects should be the critical problems for obtaining the good plasma uniformity, and the ion damage on the thin film layer due to the high voltage between the substrate and the bulk plasma might cause the defects which degrade the film quality. In this study, we will propose the new concept of the large-area multi-electrode (a new multi-electrode concept for the large-area plasma source), which consists of a series of electrodes and grounds arranged by turns. The experimental results with this new electrode showed the processing performances of high D/R (1 ~ 2 (nm/sec)), controllable crystallinity (~70% and controllable), and good uniformity (less than 10%) at the conditions of the relatively high frequency of 40 MHz in the large-area electrode of 280 X 540 mm2. And, we also observed the SEM images of the deposited thin film at the conditions of peeling, normal microcrystalline, and powder formation, and discussed the mechanisms of the crystal formation and voids generation in the film in order to try the enhancement of the film quality compared to the cases of normal VHF capacitive discharges. Also, we will discuss the relation between the processing parameters (including gap length between electrode and substrate, operating pressure) and the processing results (D/R and crystallinity) with the process condition map for ${\mu}c$-Si:H formation at a fixed input power and gas flow rate. Finally, we will discuss the potential of the multi-electrode of the 3.5G-class large-area plasma processing (650 X 550 (mm2) to the possibility of the expansion of the new electrode concept to 8G class large-area plasma processing and the additional issues in order to improve the process efficiency.

  • PDF

A Study on Magnetized Inductively Coupled Plasma Using Cutoff Probe (Cutoff Probe를 이용한 자화유도결합 플라즈마의 특성 연구)

  • Son, Eui-Jeong;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1706-1711
    • /
    • 2016
  • Electromagnetic wave simulation was performed to predict characteristics of manufactured cutoff probe at low temperature magnetized plasma medium. Microwave cutoff probe is designed for research the properties of magnetized inductively coupled plasma. It was shown that the cutoff probe method can safely be used for weakly magnetized high density plasma sources. Cutoff probe system with two port network analyzer has been prepared and applied to measure electron density distributions in large area, 13.56MHz driven weakly magnetized inductively coupled plasma source. The results shown that, the plasma frequency confirmed cut-off characteristics in low temperature plasma. Especially, cut-off characteristics was found at upper hybrid resonance frequency in the environment of the magnetic field. In case of a induced weak magnetic field in inductively coupled plasma, plasma density estimated from the cutoff frequency in the same way at unmagnetized plasma due to nearly same plasma frequency and upper hybrid resonance frequency. The plasma density is increased and uniformity is improved by applying a induced weak magnetic field in inductively coupled plasma.

Experimental Analysis and Optimization of Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process Plasma Etching Process (실험계획법에 의한 $CF_4/O_2$ 플라즈마 에칭공정의 최적화에 관한 연구)

  • Choi, Man-Sung;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • This investigation is applied Taguchi method and the analysis of variance(ANOVA) to the reactive ion etching(RIE) characteristics of $SiO_2$ film coated on a wafer with Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process mixture. Plans of experiments via nine experimental runs are based on the orthogonal arrays. A $L_9$ orthogonal array was selected with factors and three levels. The three factors included etching time, RF power, gas mixture ratio. The etching rate of the film were measured as a function of those factors. In this study, the etching thickness mean and uniformity of thickness of the RIE are adopted as the quality targets of the RIE etching process. The partial factorial design of the Taguchi method provides an economical and systematic method for determining the applicable process parameters. The RIE are found to be the most significant factors in both the thickness mean and the uniformity of thickness for a RIE etching process.

  • PDF

A Study on High Frequency-Plasma Enhanced Chemical Vapor Deposition Silicon Nitride Films for Crystalline Silicon Solar Cells

  • Li, Zhen-Hua;Roh, Si-Cheol;Ryu, Dong-Yeol;Choi, Jeong-Ho;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.156-159
    • /
    • 2011
  • SiNx:H films have been widely used for anti-reflection coatings and passivation for crystalline silicon solar cells. In this study, SiNx:H films were deposited using high frequency (13.56 MHz) direct plasma enhanced chemical vapor deposition, and the optical and passivation properties were investigated. The radio frequency power, the spacing between the showerhead and wafer, the $NH_3/SiH_4$ ratio, the total gas flow, and the $N_2$ gas flow were changed over certain ranges for the film deposition. The thickness uniformity, the refractive index, and the minority carrier lifetime were then measured in order to study the properties of the film. The optimal deposition conditions for application to crystalline Si solar cells are determined from the results of this study.

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF

Characteristics of Ar Plasma Excited by Helicon Wave (Helicon wave 에 의하여 여기된 Ar 플라즈마 특성)

  • 김태영;정기형;이승학;정재국
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.6
    • /
    • pp.327-334
    • /
    • 1994
  • This work concerns a research for helicon wave plasma generators with applications to materials pro-cessing. For this end, helicon wave plasma source has been designed, constructed and tested. High density plasma was successfully produced and diagnosed with Langmuir probe. The measured maximum plasma de-nsity in this work was $10^{11}cm{-3}$ with 295 gauss of magnetic field and electron temperature was about 3.5eV. The uniformity of plasma densities in the radial direction was excellent with 160 gauss of magnetic field on the cross section which is 10cm apart from the edge of the exciting coil.

  • PDF

이중 주파수를 사용한 펄스 유도 결합 플라즈마의 특성 연구

  • Lee, Seung-Min;Kim, Gyeong-Nam;Kim, Tae-Hyeong;Lee, Cheol-Hui;Kim, Gi-Seok;Bae, Jeong-Un;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.197-197
    • /
    • 2014
  • Plasma를 이용하는 반도체 공정에서 high density, plasma uniformity 및 electron temperature와 같은 plasma 특성을 조절하는 것은 차세대 공정 장비 개발에 있어서 매우 중요한 요소이다. 본 연구에서는 이를 위해 2개의 다른 주파수를 사용하는 spiral type의 안테나에 pulse를 적용시켜 각각 인가되는 power를 조절함으로써 plasma의 특성을 조절하고자 하였다. 또한 pulse plasma를 적용하여 다양한 duty ratio 조건에서 plasma 특성을 확인하였으며 식각 공정을 통하여 etch selectivity를 향상시키려 하였다.

  • PDF

Comparison of E-ICP Effect for Large Area Plasma Source (대면적 플라즈마 소스에의 E-ICP 적용과 그 효과 비교)

  • 김진우;손민영;박세근;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.608-611
    • /
    • 2000
  • Large area plasma source becomes important as the substrate size increases. In this work, four inductively coupled plasma(ICP) unit sources are distributed 2${\times}$2 array. E-ICP concept is applied to the 2${\times}$2 array ICP and its effect is examined. Characteristics of the plasma are measured, and photoresist etching is performed with oxygen plasma. Good etching characteristic in terms of etching rate and uniformity can be obtained with E-ICP.

  • PDF

Temperature Uniformity of the Glass Panel Heated in the Infrared Heating Chamber

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1950-1956
    • /
    • 2005
  • An analysis has been carried out to investigate the effect of the reflectivity on the temperature distribution of a glass panel by infrared radiant heating. Halogen lamps are used to heat the panel, located near the top and bottom of the rectangular chamber. The thermal energy is transferred from the lamps to the panel only by radiation and it is considered by using view factor. The conductive transfer is limited inside the panel. The results show that the uniformity of the temperature distribution of the panel is improved and, at the same time, the time for heating increases as the wall reflectivity increases. The temperature difference between the center and the corner reaches a maximum in the early stage of the heating process and then decreases until it reaches a uniform steady-state value.