• Title/Summary/Keyword: Plasma spectroscopy

Search Result 1,114, Processing Time 0.033 seconds

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

Current, flow rate and pressure effects in a Gas-Jet-assisted Glow Discharge source (Gas-Jet-assisted Glow Discharge에서 전류, 가스 흐름 속도, 압력에 따른 영향 연구)

  • Lee, Gaeho;Kim, Dongsoo;Kim, Eunhee;Kang, Seongshik;Park, Minchun;Song, Haeran;Kim, Hasuck;Kim, Hyojin
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.483-492
    • /
    • 1994
  • Direct solid analysis of various kinds of metal samples has been conducted by glow discharge. In this laboratory, the gas-jet assisted glow discharge(GJGD) device has been developed and characterized. The effect of changes in applied current, cell pressure and flow rate on atomic emission signals obtained from a jet-assisted cathodic sputtering was investigate. The emission intensities of Cu, Zn, and Ar were measured. They were increased with the current. But the intensities were decreased by increasing the flow rate of argon due to the diffusion and transportation of particles into plasma. By increasing the pressure of the cell, the intensities were greatly decreased because of enhancement of redeposition onto the surface of the sample.

  • PDF

A Risk Assessment in According to Spot Measures and Analysis in Dust Generation Area (분진발생지역의 현장실측과 분석을 통한 위험성 평가)

  • Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.103-110
    • /
    • 2008
  • In terms of electrical safety, environmental impact assessment and revision of domestic regulation are needed for the electric facilities. In this paper, risk of electric facilities is assessed by the spot measures and analysis in dust generation area. Adhesion dust in a surface of insulated materials cause electrical accidents. In a mechanism of these accidents, when the dust lie on electric facilities, a leakage current is flowed and the surface of insulated material is carbonized. Hereafter, electrical fire is generated due to Joule's heat. As the results, dusts are found in protection devices or panel board and sampled dusts vary in sampled amounts and conductivity severally. For the most part, sodium is detected but zinc and calcium are detected in case of reclaimed rubber factory by the ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectroscopy). In a sewerage, the ingredients such as sodium, magnesium, iron, calcium, aluminium, etc are detected uniformly. So that, results of the spot measures and analysis of dusts are become the important data for the assessment of electrical hazard in dust generation area.

이온빔 보조에 의한 Al 표면의 에칭 및 산화막 형성

  • 김종민;권봉준;이주선;김명원;김무근;오성근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.133-133
    • /
    • 2000
  • 알루미늄 산화막은 알루미늄 전해 커패시터의 유전재료로 많이 사용되고 잇다. 기존의 생산 공정은 양극 산화법에 의한 산화막 형성으로 대부분이 이러한 습식 공정으로 생산되고 있다. 이 양극 산화법 방식은 장점도 있으나 폐기물이 많이 발생되는 단점이 있다. 본 연구에서는 폐기물의 발생을 획기적으로 줄일 수 있고 산화막 형성 효율을 높일 수 잇는 방식으로 activated reactive evaporation(ARE)을 도입하였다. 이 방식은 electron-beam에 의해 알루미늄을 증착시킬 때 plasma를 챔버 내에 발생시켜 활성 반응으로 알루미늄 원자가 산소와 반응하여 기판위에 Al2O3가 증착되는 것이다. 이 방식은 기계적 작동이 단순하고 증착이 되는 여러 변수들의 독립적 조절이 가능하므로 증착을 제어하기 쉽기 때문에 바로 산업 현장에서 적용될 수 있을 것으로 전망되어 본 연구에 도입하게 되었다. 기판은 유전용량을 증가시키기 위하여 알루미늄 원박을 에칭하였다. 이것은 기판으로 쓰일 알루미늄의 표면의 표면적을 증가시키기 위한 것으로, 알루미늄 전극의 표면적을 확대시키면 유전용량이 증가된다. 99.4%의 50$\mu\textrm{m}$와 60$\mu\textrm{m}$ 두께의 알루미늄 원박을 Ar 이온빔에 의해 1keV의 에너지로 20mA로 에칭을 하였다. 에칭 조건별로 에칭상태를 조사하였다. 에칭 후 표면 상태는 AFM으로 관찰하였다. 화성 실험은 진공 챔버 내의 진공을 약 10-7 torr까지 내린 후, 5$\times$10-5 torr까지 O2와 Ar을 주입시킨 다음 filament에서 열전자를 방출시키고 1.2 kV의 electrode에 의해 가속시켜 이들 기체들의 플라즈마를 발생시켰다. e-beam에서 증발된 알루미늄과 활성 반응을 이루어 기판에 Al2O3가 형성되었다. 여러 증착 변수들(O2와 Ar의 분압, 가속 전압, bias 전압 등)과 산화막의 상태 등을 XPS(X-ray photoelectron spectroscopy), AFM(Atomic Force Microscopy), XRD(X-Ray Diffraction), EXD로 조사하였다.

  • PDF

Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

  • Kim, Y.;Song, W.;Lee, S.Y.;Jung, W.;Kim, M.K.;Jeon, C.;Park, C.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.80-80
    • /
    • 2010
  • Graphene has attracted tremendous attention for the last a few years due to it fascinating electrical, mechanical, and chemical properties. Up to now, several methods have been developed exclusively to prepare graphene, which include micromechanical cleavage, polycrystalline Ni employing chemical vapor deposition technique, solvent thermal reaction, thermal desorption of Si from SiC substrates, chemical routes via graphite intercalation compounds or graphite oxide. In particular, polycrystalline Ni foil and conventional chemical vapor deposition system have been widely used for synthesis of large-area graphene. [1-3] In this study, synthesis of mono-layer graphene on a Ni foil, the mixing ratio of hydrocarbon ($CH_4$) gas to hydrogen gas, microwave power, and growth time were systemically optimized. It is possible to synthesize a graphene at relatively lower temperature ($500^{\circ}C$) than those (${\sim}1000^{\circ}C$) of previous results. Also, we could control the number of graphene according to the growth conditions. The structural features such as surface morphology, crystallinity and number of layer were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), transmission electron microscopy (TEM) and resonant Raman spectroscopy with 514 nm excitation wavelength. We believe that our approach for the synthesis of mono-layer graphene may be potentially useful for the development of many electronic devices.

  • PDF

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Effect of Ca Ion on the SCR Reaction over VOx/TiO2 (Ca 이온이 VOx/TiO2 SCR 반응에 미치는 영향 연구)

  • Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • In this study, we investigated the cause of the decrease in activities of $VO_x/TiO_2$ SCR catalyst used for the burner reactor at a scale of $150000Nm^3/hr$ using X-ray diffraction (XRD), brunauer-emmett-teller (BET), atomic emission spectroscopy inductively coupled plasma (AES ICP), $H_2$ temperature programmed reduction ($H_2$-TPR), and $NH_3$ temperature programmed desorption ($NH_3$-TPD) analysis. Since the crystallization of the $VO_x$ and phase transition of $TiO_2$ did not occur, it was concluded that the catalyst was not deactivated by the thermal effect. In addition, from the elemental analysis showing that a large quantity of calcium was detected but not sulfur, the deactivation process of the $VO_x/TiO_2$ SCR catalyst was mainly caused by Ca but not by $SO_2$. The calcium was also found to decrease the catalytic activity by means of reducing $NH_3$ adsorption.

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.