• Title/Summary/Keyword: Plasma sheath

Search Result 98, Processing Time 0.027 seconds

Measurement of plasma potential by a biased cut off probe

  • Kim, Dae-Ung;Kim, Jeong-Hyeong;Seong, Dae-Jin;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.465-465
    • /
    • 2010
  • Cut off probe, the efficient method, can measure the plasma parameters like the plasma electron density and the electron temperature. Plasma potential is also one of the important parameters in plasma processing but cannot be measured by cut off probe yet. Thus we developed method to measure plasma potential by focusing on relation between bias on a tip and sheath around tip. The system consist of a ICP(Inductive Coupled Plasma) source, a Network analyzer and a bias tee that can be bridge apply DC voltage on the cut off probe tip. Plasma potential is identified by using this system. The results corresponded well with the measured results by single langmuir probe(SLP).

  • PDF

Numerical Modeling of Plasma Characteristics of ICP System with a Pulsed dc Bias (수치모델을 이용한 pulsed dc bias ICP장치의 플라즈마 특성 해석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.154-158
    • /
    • 2010
  • Numerical analysis is done to investigate the effects of pulse bias on the plasma processing characteristics like ion doping and ion nitriding by using fluid dynamic code with a 2D axi-symmetric model. For 10 mTorr of Ar plasma, -1 kV of pulse bias was simulated. Maximum sheath thickness was around 20 mm based on the electric potential profile. The peak electron temperature was about 20 eV, but did not affect the averaged plasma characteristics of the whole chamber. Maximum ion current density incident on the substrate was 200 $A/m^2$ at the center, but was decreased down to 1/10th at radius 100 mm, giving poor radial uniformity.

Diagnostics of Inductively Coupled $BCl_3/Ar$ Plasma Characteristics Using Quadrupole Mass Spectrometer (사중극자 질량 분석기를 이용한 $BCl_3/Ar$ 유도결합 플라즈마 특성 진단)

  • Kim, Gwan-Ha;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.204-208
    • /
    • 2006
  • In this study, we investigated the ion energy distributions in a chlorine based inductively coupled plasma by quadrupole mass spectrometer with an electrostatic ion energy analyzer. Ion energy distributions are presented for various plasma parameters such as $BCl_3/Ar$ gas mixing ratio, RF power, and process pressure. As the $BCl_3/Ar$ gas mixing ratio and process pressure decreases, and RF power increases, the saddle-shaped structures is enhanced. The reason is that there are ionized energy difference between $BCl_3$ and Ar, change of plasma potential, alteration of mean free path. and variety of ion collision in the sheath.

The Behavior of Negative Ions in Silane Plasma Chemical Vapor Deposition (실란 플라즈마 화학증착에서의 음이온거동)

  • Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.63-75
    • /
    • 1994
  • The objective of this research is to analyze the phenomena of negative ion behavior in silane plasma chemical vapor deposition. Based on the plasma chemistry, the model equations for the formation and transport of negative ions were proposed and solved. The evolutions of gaseous species along the reactor were presented for several conditions of process variables such as reactor pressure, total gas flow rate, and electric field. Based on the model results, it is found that : (1) The concentration profiles of positive ions show the sharp peaks at the center of plasma reactor. (2) Most of negative ions are located in bulk plasma region, because the negative ions are excluded from the sheath region by electrostatic repulsion.

  • PDF

A study on the physical behavior of arc plasmas in transferred-type Torch (이행형 토치에서의 아크 플라즈마의 물리적 거동에 관한 연구)

  • 김외동;고광철;강형부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.415-425
    • /
    • 1996
  • This study presents an analytical method of solving the behaviors of arc plasma in a nozzle constricting transferred-type torch and purposes to obtain the basic data for the design of a plasma torch, which can be obtained from the temperature, pressure, velocities and voltage distributions. We have to solve some conservation equations simultaneously and need to know the exact thermal gas properties in order to obtain the correct behaviors of arc plasma. It is also necessary to give the relevant physical or geometric boundary conditions. For the simplicity of analysis, we assumed that (a) the plasma flow is laminar, (b)the local thermodynamic equilibrium, i.e. LTE, prevails over the entire arc column region. The electrode sheath effects were neglected and the nozzle area was excluded from the analysis by assuming that the current flow into the nozzle is zero. We solved the momentum transfer equation including the self-magnetic pinch effect, and obtained the temperature distribution from the energy conservation equation. From this temperature, we could get arc voltage distribution. (author). refs., figs., tabs.

  • PDF

Dense Plasma Sources for Conventional and $PI_3$ Implanters

  • S.A. Nikiforov;Lee, H.S.;Kim, G.H.;G.H. Rim
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.29-39
    • /
    • 1999
  • Both conventional and PI3 implanters require dense sources for high productivity rate, and small sheath expansion in PI3 besides. The problem of the creation of large volume uniform plasma in PI3 facilities replaces that of beam forming in accelerators. Some aspects of ion extraction in both cases and Langmuir probe plasma diagnostics with be discussed. Plasma parameters of large volume multicusp dc hot cathode and inductively coupled RF plasma sources obtained with Langmuir probe and ion mass analyzer with be presented. Design features and performances of high current Freeman and ECR ion sources will be described.

  • PDF

Damage-Free Treatment of ITO Films using Nitrogen-Oxygen (N2-O2) Molecular DC Plasma

  • Kim, Hong Tak;Nguyen, Thao Phoung Ngoc;Park, Chinho
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.112-115
    • /
    • 2015
  • In this study, the surface of ITO films was modified using $N_2-O_2$ molecular plasma, and the effects of oxygen concentration in the plasma on the ITO surface properties were investigated. Upon plasma treatment of ITO films, the surface roughness of ITO films seldom changed up to the oxygen concentration in the range of 0% to 40%, while the roughness of the films slightly changed at or above the oxygen concentration of 60%. The contact angle of water droplet on ITO films dramatically changed with varying oxygen concentration in the plasma, and the minimum value was found to be at the oxygen concentration of 20%. The plasma resistance at this condition exhibited a maximum value, and the change of resistance showed an inverse relationship compared to that of contact angle. From these results, it was conjectured that the chemical reactions in the sheath of the molecular plasma dominated more than the physical actions due to energetic ion bombardment, and also the plasma resistance could be used as an indirect indicator to qualitatively diagnosis the state of plasma during the plasma treatment.

Enhancement of the Virtual Metrology Performance for Plasma-assisted Processes by Using Plasma Information (PI) Parameters

  • Park, Seolhye;Lee, Juyoung;Jeong, Sangmin;Jang, Yunchang;Ryu, Sangwon;Roh, Hyun-Joon;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.132-132
    • /
    • 2015
  • Virtual metrology (VM) model based on plasma information (PI) parameter for C4F8 plasma-assisted oxide etching processes is developed to predict and monitor the process results such as an etching rate with improved performance. To apply fault detection and classification (FDC) or advanced process control (APC) models on to the real mass production lines efficiently, high performance VM model is certainly required and principal component regression (PCR) is preferred technique for VM modeling despite this method requires many number of data set to obtain statistically guaranteed accuracy. In this study, as an effective method to include the 'good information' representing parameter into the VM model, PI parameters are introduced and applied for the etch rate prediction. By the adoption of PI parameters of b-, q-factors and surface passivation parameters as PCs into the PCR based VM model, information about the reactions in the plasma volume, surface, and sheath regions can be efficiently included into the VM model; thus, the performance of VM is secured even for insufficient data set provided cases. For mass production data of 350 wafers, developed PI based VM (PI-VM) model was satisfied required prediction accuracy of industry in C4F8 plasma-assisted oxide etching process.

  • PDF

Effect of Parameters for Dense Bleposit by Plasma (플라즈마에 의한 고밀도침적물 제조시 변수들의 영향)

  • 정인하
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • Thick and dense deposit of higher than 97% of theoretical density was formed by induction plasma spraying. To investigate the effects of powder morphology on the density of deposit, two different kinds of Yttria-Stabilized-Zirconia powder, METCO202NS (atomized & agglomerated) and AMDRY146 (fused & crushed), were used and compared. After plasma treatment, porous METCO202NS powder was all the more densely deposited and its density was increased. In addition to the effect of powder morphology, the process parameters such as, sheath gas composition, probe position, particle size and spraying distance, and so on, were evaluated. The result of experiment with AMDRY146 powder, particle size and spraying distance affected highly on the density of the deposit. The optimum process condition for the deposition of -75 ${\mu}m$ of 20%-Yttria-Stabilized-Zirconia powder was 120/201/min of Ar/$H_2$ gas rate, 80 kW of plasma plate power, 8 cm of probe position and 150 Torr of spraying chamber pressure, at which its density showed 97.91% of theoretical density and its deposition rate was 20 mm/min. All the results were assessed by statistical approach what is called ANOVA.

  • PDF