• Title/Summary/Keyword: Plasma resonance effect

Search Result 42, Processing Time 0.02 seconds

Effect of bounce resonance heating on Electron Energy Distribution Function in a small Inductively Coupled Plasma

  • 정진욱;서상훈;장홍영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.208-208
    • /
    • 1999
  • It is found that with increasing power, the measured electron energy distribution by Langmuir probe evolves into a Druyvesteyn-like electron energy distribution in the low-pressure regime of 1mTorr in a small inductively coupled plasma. Electron bounce resonance is introduced to explain the transition of the electron energy distribution against the rf power, The energy diffusion coefficients which determine the shape of the electron energy distribution in elastic range are calculated with and without electron bounce resonance. This electron energy distribution transition is well explained by the electron bounce resonance.

  • PDF

Electrical Properties of Interlayer Low Dielectric Polyimide with Electron Cyclotron Resonance Etching Process (ECR 식각 공정에 따른 층간절연막 폴리이미드의 전기적 특성)

  • 김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.13-17
    • /
    • 2000
  • The electrical properties of polyimide for interlayer dielectric applications are investigated with ECR (Electron Cyclotron Resonance) etching process. ECR etching with $Cl_2$-based plasma, generally used for aluminum etching, results in an increase in the dielectric constant of polyimide, while $SF_{6}$ plasma exhibits a high polyimide etch rate and a reducing effect of the dielectric constant. The leakage current of the polyimide is significantly suppressed after plasma exposure. Combination of Al etching with $Cl_2$plasma and polyimide etching with $SF_{6}$ plasma is expected as a good tool for realizing the multilevel metallization structures.

  • PDF

Study on the Nonlinear Interaction of Laser with Plasma -Detection of Second Harmonic Light and Brillouin Scattering Light by Means of Spectroscopic Technique- (레이저와 프라즈마와의 비선형상오작용에 관한 연구 -분광법에 의한 제 2고주파와 Brillouin 산람광의 검출-)

  • Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.173-180
    • /
    • 1984
  • The spectra of scattering light fromlaser-produced plasma near its fundamental and second harmonic wavelength were observed respectively by means of spectroscopic technique. The experimental results and the generation mechanism of nonlinear effects such as the second garmonics and the brillouin scattering were analysed theoretically. The spectra of reflected laser light became wider than that of incident laser light. And the peak of spectrum of reflected light shifted to red-side from that of incident light. The second harmonic light is generated from the nonlinear interaction of the incident laser light and the electron plasma wave excited in resonance region by the oblique incidence of laser light to the plasma. The Brillouin backscattering from laser-produced plasmas of hydrogen and deuterium has shown an isotope effect in the red-side region of the generated second harmonic light. This isotope shift is explained by the parametric instability at the cutoff (resonance) region using frequency-and phase-matching conditions of the waves.

  • PDF

The Effect of Substrate DC Bias on the Low -Temperature Si homoepitaxy in a Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (초고진공 전자 사이클로트론 화학 기상 증착 장치에 의한 저온 실리콘 에피 성장에 기판 DC 바이어스가 미치는 영향)

  • 태흥식;황석희;박상준;윤의준;황기웅;송세안
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.501-506
    • /
    • 1993
  • The spatial potential distribution of electron cyclotron resonance plasma is measured as a function of tehsubstrate DC bias by Langmuir probe method. It is observed that the substrate DC bias changes the slope of the plasma potential near the subsrate, resulting in changes in flux and energy of the impinging ions across plasma $_strate boundary along themagnetric field. The effect of the substrate DC bias on the low-temperature silicon homoepitaxy (below $560^{\circ}C$) is examine dby in situ reflection high energy electron diffraction (RHEED), cross-section transmission electron microscopy (XTEM),plan-view TEM and high resolution transmision electron microscopy(HRTEM). While the polycrystalline silicon layers are grow withnegative substrate biases, the single crystaline silicon layers are grown with negative substrate biases, the singel crystalline silicon layers are grown with positive substrate biases. As the substrate bias changes form negative to positive values, the growth rate decreases. It is concluded that the control of the ion energy during plasma deposition is very important in silicon epitaxy at low temperatures below $560^{\circ}C$ by UHV-ECRCVD.VD.

  • PDF

Study on the Etching Characteristics of $0.2\mu\textrm{m}$ fine Pattern of Ta Thin film for Next Generation Lithography Mask (차세대 노광공정용 Ta박막의 $0.2\mu\textrm{m}$ 미세패턴 식각특성 연구)

  • Woo, Sang-Gyun;Kim, Sang-Hoon;Ju, Sup-Youl;Ahn, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.819-824
    • /
    • 2000
  • In this research, the etching characteristics of Ta thin film with chlorine plsama have been studied by Electron Cyclotron Resonance (ECR) plasma etching system. The effects of microwave power, RF bias power, working pressure and gas chemistry on the etching profiles have been investigated. The microloading effect, which was observed at fine pattern formation, was effectively suppressed by double step etching, and anisotropic $0.2{\mu\textrm{m}}$ L&S patterns were successfully generated.

  • PDF

Experimental Research of an ECR Heating with R-wave in a Helicon Plasma Source

  • Ku, Dong-Jin;An, C.Y.;Park, Min;Kim, S.H.;Wang, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.274-274
    • /
    • 2012
  • We have researched on controlling an electron temperature and a plasma collision frequency to study the effect of collisions on helicon plasmas. So, we have designed and constructed an electron cyclotron resonance (ECR) heating system in the helicon device as an auxiliary heating source. Since then, we have tried to optimize experimental designs such as a magnetic field configuration for ECR heating and 2.45GHz microwave launching system for its power transfer to the plasma effectively, and have characterized plasma parameters using a Langmuir probe. For improving an efficiency of the ECR heating with R-wave in the helicon plasma, we would understand an effect of R-wave propagation with ECR heating in the helicon plasma, because the efficiency of ECR heating with R-wave depends on some factors such as electron temperature, electron density, and magnetic field gradient. Firstly, we calculate the effect of R-wave propagation into the ECR zone in the plasma with those factors. We modify the magnetic field configuration and this system for the effective ECR heating in the plasma. Finally, after optimizing this system, the plasma parameters such as electron temperature and electron density are characterized by a RF compensated Langmuir probe.

  • PDF

Experimental investigation on effect of ion cyclotron resonance heating on density fluctuation in SOL at EAST

  • Li, Y.C.;Li, M.H.;Wang, M.;Liu, L.;Zhang, X.J.;Qin, C.M.;Wang, Y.F.;Wu, C.B.;Liu, L.N.;Xu, J.C.;Ding, B.J.;Lin, X.D.;Shan, J.F.;Liu, F.K.;Zhao, Y.P.;Zhang, T.;Gao, X.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.207-219
    • /
    • 2022
  • The suppression of high-intensity blob structures in the scrape-off layer (SOL) by ion-cyclotron range of frequencies (ICRF) power, leading to a decrease in the turbulent fluctuation level, is observed first in the Experimental Advanced Superconducting Tokamak (EAST) experiment. This suppression effect from ICRF power injection is global in the whole SOL at EAST, i.e. blob structures both in the regions that are magnetically connected to the active ICRF launcher and in the regions that are not connected to the active ICRF launcher could be suppressed by ICRF power. However, more ICRF power is required to reach the full blob structure suppression effect in the regions that are magnetically unconnected to the active launcher than in the regions that are magnetically connected to the active launcher. Studies show that a possible reason for the blob suppression could be the enhanced Er × B shear flow in the SOL, which is supported by the shaper radial gradient in the floating potential profiles sensed by the divertor probe arrays with increasing ICRF power. The local RF wave power unabsorbed by the core plasma is responsible for the modification of potential profiles in the SOL regions.

Properties of Interlayer Low Dielectric Polyimide during Aluminum Etching with Electron Cyclotron Resonance Etcher System

  • Kim, Sang-Hoon;Ahn, Jin-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.87-96
    • /
    • 2000
  • The properties of polyimide for interlayer dielectric applications are investigated during plasma etching of aluminum on it. Chlorine-based plasma generally used for aluminum etching results in an increase in the (dielectric constant of polyimide, while $SF_6$ plasma exhibits a high polyimide etch rate and a reducing effect of the dielectric constant. The leakage current of polyimide is significantly suppressed after plasma exposure. An optimal combination of Al etch with $Cl_6$ plasma and polyimide etch with $SF_6$ plasma is expected to be a good tool for realizing multilevel metallization structures.

  • PDF

Study on the Etching Characteristics of Fine Ta patterns by Actinometry Method (Actinometry를 이용한 Ta 미세 패턴 식각 특성에 관한 연구)

  • 김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.43-47
    • /
    • 2000
  • The etching characteristic of a tantalum thin film with pure chlorine plasma was studied using an electron cyclotron resonance etcher system. Optical emission actinometry (OEA) was used for the study of the etching mechanism of a tantalum thin film and optimum process condition was achieved by OEA study. Based on this mechanism, double step etching was performed and 0.15 $\mu\textrm{m}$ L & S was acquired successfully suppressing the microloading effect.

  • PDF

Etching Characteristics of Fine Ta Patterns with Electron Cyclotron Resonance Chlorine Plasma

  • Kim, Sang-Hoon;Woo, Sang-Gyun;Ahn, Jin-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.97-102
    • /
    • 2000
  • We have studied etching characteristic of Ta film using Electron Cyclotron Resonance (ECR) etcher system. Microwave source power. RF bias power. and working pressure were varied to investigate the etch Profile. And we have used two step etching method to acquire the goWe have studied etching characteristic of Ta film using Electron Cyclotron Resonance (ECR) etcher system. Microwave source power. RF bias power. and working pressure were varied to investigate the etch Profile. And we have used two step etching method to acquire the good etch profile preventing the microloading effect.od etch profile preventing the microloading effect.

  • PDF