• Title/Summary/Keyword: Plasma protein

Search Result 1,391, Processing Time 0.028 seconds

Effect of Freezing on Proteins and Protein Profiles of Sperm Membrane Extracts and Seminal Plasma of Buffalo Bulls

  • Dhanju, C.K.;Cheema, R.S.;Kaur, S.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1678-1682
    • /
    • 2001
  • The total proteins were estimated in both deoxycholate (DOC)-extract of sperm membrane and seminal plasma of chilled as well as frozen semen obtained from five Murrah buffalo bulls. Proteins were further characterized by polyacrylamide gel electrophoresis (PAGE) in three bulls. The protein content of sperm membrane extract (SME) and that of seminal plasma (SP) decreased gradually with increase in freezing period from 6 to 24 mo when compared with the values observed in freshly chilled semen in all bulls. The total decrease in protein content of SME and SP varied from 30-40% and 28-59% respectively during 6-24 mo of freezing. The number of glycoproteins/proteins (GP/P) in SME varied from 4-8 in freshly-chilled semen of all bulls and reduced to 2-4 after 24 mo of freezing. In SP, the number of proteins varied from 6-10 in freshly chilled semen of all bulls and reduced to 3-8 after 24 mo of freezing. Some of the proteins in SME and SP disappeared, others got altered and appeared with change in molecular weight after different freezing times. These studies reveal that alterations in the sperm membrane proteins may be responsible for damage to their membrane during freezing and thus lowering their fertilizability.

Supplementation of Pork Patties with Bovine Plasma Protein Hydrolysates Augments Antioxidant Properties and Improves Quality

  • Seo, Hyun-Woo;Seo, Jin-Kyu;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.198-205
    • /
    • 2016
  • This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and hardness both decreased upon the addition of PP hydrolysates. All samples containing BHT and PP hydrolysates had reduced TBARS and peroxide values during storage. In particular, 2% PP hydrolysates were more effective in delaying lipid oxidation than were the other treatments. It was concluded that treatment with 2% PP hydrolysates can enhance the acceptance of pork patty.

Effect of Bovine Plasma Protein Hydrolysates on the Quality Properties of Cooked Pork Patty

  • Seo, Hyun-Woo;Seo, Jin-Kyu;Yeom, Hyeon-Woong;Yang, Han-Sul
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.155-165
    • /
    • 2016
  • The study investigated the effects of adding bovine plasma protein(PP) hydrolysates on the quality properties of cooked pork patties. Pork patties were prepared as follows: manufactured with pork back-fat(control); replacement of back-fat with 40% olive oil(T1), 40% olive oil and 2% PP hydrolysates(T2), and 40% olive oil and 4% PP hydrolysates(T3). The olive oil modified the fatty acid profiles of the pork patties by lowering the saturated fatty acids(SFAs) percentage. Olive oil and 4% PP hydrolysates addition reduced the level of 2-thiobarbituric acid-reactive substance(TBARS) values in pork patties, compared to the controls. Furthermore, the pork patties with added PP hydrolysates had higher pH values than the control. All samples containing olive oil and PP hydrolysates had increased levels of DPPH radical scavenging activity. In particular, added PP hydrolysates were more effective in increasing antioxidant activity than were the other treatments. Therefore, PP hydrolysates could be used as a natural antioxidative in cooked pork patties.

The effect of dietary intake and anthropometric parameters on the plasma lipid level (성인의 영양소 섭취상태 및 체위와 혈액내 지방수준과의 상관관계에 관한 연구)

  • 이경애
    • Journal of the Korean Home Economics Association
    • /
    • v.33 no.6
    • /
    • pp.89-97
    • /
    • 1995
  • This study was undertaken to examine the correlations between dietary intakes or anthropometric parameters and the plasma lipid level. measurements of dali nutrients intake, body weight, height, body bass index, skinfold thickness, blood pressure, plasma total lipid, triglyceride and cholesterol were made to each of 124 healthy adult(25-59yrs) : 56 males and 65 females. The mean energy and nutrients intake, anthropometric parameters and plasma lipid levels were all in normal range. In females, the fat and protein intake, the amount and percents to total energy intake, had positive association with the plasma total lipid, but the energy percent from carbohydrate intake was correlated negatively. And body mass index positively correlated with plasma total lipid level, in male and female, Therefore we could postulated the dietary fat intake and body mass index affected to plasma lipid levels in normal conditions of healthy adult.

  • PDF

Changes in in vivo ruminal fermentation patterns and blood metabolites by different protein fraction-enriched feeds in Holstein steers

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • The present study was conducted to investigate the effects of different dietary proteins as fraction-enriched protein, defined by Cornell net carbohydrates and protein system (CNCPS), on in vivo ruminal fermentation pattern and blood metabolites in Holstein steers fed total mixed ration (TMR) containing 17.2% crude protein. Four ruminally cannulated Holstein steers in a $4{\times}4$ Latin square design consumed TMR only (control) and TMR with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C). Each protein was substituted for 23.0% of crude protein in TMR. Rumen digesta were taken through ruminal cannula at 1 h interval during the feeding cycle in order to analyze ruminal pH, ammonia-N, and volatile fatty acids (VFA). Plasma metabolites in blood taken via the jugular vein after the rumen digesta sampling were analyzed. Feeding perilla meal significantly (p < 0.05) decreased mean ruminal pH compared with control and the other protein feeding groups. Compared with control, feeding protein significantly (p < 0.05) increased ruminal ammonia-N concentration except for AB1. Statistically (p > 0.05) similar total VFA appeared among control and the supplemented groups. However, control, AB1, and B2 showed higher (p < 0.05) acetate concentrations than B3C, and propionate was vice versa. CNCPS fractionated protein significantly (p < 0.05) affected concentrations of albumin and total protein in blood; i.e. plasma albumin was lower for control and B2 groups than AB1 and B3C groups. Despite lack of significances (p > 0.05) in creatinine and blood urea nitrogen, AB1 and B2 groups were numerically higher than the others.

Analysis of the Adsorbed Plasma Proteins in the Moving Actuator type Total Artificial Heart

  • Gyu Ha Ryu;Jon
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 1993
  • Plasma protein adsorption is the first event in the blood-material interaction and influenc- es subsequent platelet adhesion towards thlㅈombus formation. Thiㅈomboembolic events are strongly influenced by surface characteristics of materials and fluid dynamics inside the blood pump. In vitro flow visualizaion and an amimal experiment with the moving actuator type TAH were Performed in order to investigate fluid dynamic effects on the protein adsorption. The diffel'encl level, j of shear rate inside the ventricle Lvere determined by consid- ering the direction of the major opening of four healt valves in the implanted TAH and the visualized flow patterns as well. Each ventricle of the explanted TAH was sectionalized into 12 segments according to the shear rate level. The adsorbed protein on each segment was quantified using the ELISA method after soaking in 2% (wye)SDS/PBS for two days. Adsorbed protein layer thicknesses Itvere measured by the Immunogotd method under TEM. The SEM observation show that right ventricle (RV) , immobilized with albumin, displayed different degrees of platelet adhesion on each segment, whereas the left ventricle (LV), grafted by PEO-sulronate, indicated nearly , iame platelet adhesion behavior, regardless of shear rates. The surface concentrations of adsorbed proteins in the low shear rate region are hlghel'than those in the high region, which was confirmed statistically. A modified adsorption model of plasma protein onto polyurethane surface was suggested by considering the effect of the fluid dynamic characteristics.

  • PDF

Surface Properties of Liposomes Modified with Poly(ethylenimine) (폴리에틸렌이민으로 개질된 리포솜의 표면 특성)

  • 박윤정;남다은;서동환;한희동;김태우;김문석;신병철
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2004
  • Cationic liposomes for cancer treatment have been developed in the field of chemotharpy. It was well combined on the surface of anionic tumor cell membrane by electrostatic interaction. Thus, the object of this study was to prepare the cationic liposomes capable of forming an ionic complex with the anionic cell membrane. To prepare the cationic liposomes, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) as a cationic lipid material and polyethylenimine (PEI) as a cationic polymer were synthesized. Ionic property on the surface of liposomes was determined by the zeta potential. The adsorption characteristics of plasma protein for liposome in bovine serum were determined by the particle size and turbidity change. To estimate the stability of liposome in buffered solution, the change of particle size was measured at room temperature for seven days. The cationic liposomes were absorbed a large amount of plasma protein in bovine serum because plasma protein having anionic charge was fixed on the surface of cationic liposomes. This result indicate that the modification on the surface of liposomes using cationic polyethylenimine enhances the protein adsorption in bovine serum. Additionaly, cationic liposomes showed good stability in buffered solution for seven days.

Blue light signaling in stomatal guard cells

  • Shimazaki, Ken-ichiro;Michio Doi;Toshinori Kinoshita
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.86-89
    • /
    • 2002
  • Blue light activates proton pump, and creates electrical gradient across the plasma membrane and drives $K^{+}$ uptake in stomatal guard cells. In this presentation, we provide evidence for regulatory mechanisms of the pump and the identification of blue light receptor. The pump is shown to be the plasma membrane H$^{+}$- ATPase and is activated through phosphorylation of the C-terminus. Phosphorylation occurred and 14-3-3 protein bound to the phosphorylation site. The binding of 14-3-3 protein was required for the H$^{+}$-ATPase activation. We also found that phot1 phot2 double mutant does not respond to blue light but other mutants respond to blue light by stomatal opening. However, all these mutants are capable of stomatal opening in the presence of fusicoccin, an activator of the H$^{+}$-ATPase. These results suggest that both photl and phot2 act as blue light receptors in guard cells.d cells.

  • PDF

Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

  • Zhang, Xiaohan;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.26-43
    • /
    • 2017
  • Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with ${\beta}$-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.