• 제목/요약/키워드: Plasma propagation

검색결과 129건 처리시간 0.026초

Identification of Retinol-binding Protein Produced by Caprine Endometrium during Periattachment Period of Early Pregnancy

  • Liu, K.H.;Huang, J.C.;Lin, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1708-1713
    • /
    • 2002
  • Endometrial explants obtained from does between days 13 and 21 of pregnancy were cultured in a modified minimum essential medium in the presence of [$^35S$]methionine and [$^3H$]-leucine. Proteins synthesized and secreted into medium were analyzed by fluorography of two-dimensional polyacrylamide gel electrophoresis and fluorography. No marked qualitative changes in patterns of protein production by caprine endometrium between days 13-21 of pregnancy. At least 11 proteins showed consistently a clear spot or a grouping of spots with characteristic location on two-dimensional gels. A major low molecular weight protein consisted of two major isoforms (pI 5.3-6.0) of similar molecular mass (21 kDa). Limited N-terminal sequence analysis of these two isoforms showed that the protein had complete homology with bovine placental and plasma retinol-binding protein (RBP) over the first 20 amino acids. Through use of the antiserum raised against bovine placental RBP, immunoreactive RBP was detected in cultures conditioned by uterine explants prepared at days 13, 15 and 21 of pregnancy. In the present study, proteins synthesized and secreted by caprine endometrium during periattachment period of early pregnancy were characterized. The pregnant endometrium secreted a number of neutral-to-acidic proteins which constituted, in part, the histotroph. A vitamin A-transport protein, RBP, was identified in cultures conditioned by endometrium of days 13-21 of pregnancy. The uterine endometrium is the only source of retinol for embryonic tissues. The uterine RBP appears to transport retinol locally toward embryonic tissues. Secretion of RBP by caprine endometrium of days 13, 15 and 21 of pregnancy suggested that retinol played an important role in conceptus development during periattachment period of early pregnancy.

PECVD로 제조된 나노결정실리콘 비선형 광학적특성 (Non-linear optical properties of PECVD nanocrystal-Si nanosecond excitation)

  • 양현훈;김한울;김주회;김철중;이창권
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.60.2-60.2
    • /
    • 2011
  • A study of the non-linear optical properties of nanocrystal-Si embedded in SiO2 has been performed by using the z-scan method in the nanosecond and femtosecond ranges. Substoichiometric SiOx films were grown by plasma-enhanced chemical-vapor deposition(PECVD) on silica substrates for Si excesses up to 24 at/%. An annealing at $1250^{\circ}C$ for 1 hour was performed in order to precipitate nanocrystal-Si, as shown by EFTEM images. Z-scan results have shown that, by using 5-ns pulses, the non-linear process is ruled by thermal effects and only a negative contribution can be observed in the non-linear refractive index, with typical values around $-10-10cm^2/W$. On the other hand, femtosecond excitation has revealed a pure electronic contribution to the nonlinear refractive index, obtaining values in the order of 10-12 cm2/W. Simulations of heat propagation have shown that the onset of the temperature rise is delayed more than half pulse-width respect to the starting edge of the excitation. A maximum temperature increase of ${\Delta}T=123.1^{\circ}C$ has been found after 3.5ns of the laser pulse maximum. In order to minimize the thermal contribution to the z-scan transmittance and extract the electronic part, the sample response has been analyzed during the first few nanoseconds. By this method we found a reduction of 20% in the thermal effects. So that, shorter pulses have to be used obtain just pure electronic nonlinearities.

  • PDF

유전알고리즘을 이용한 신경망 구조 및 파라미터 최적화 (Neural Network Structure and Parameter Optimization via Genetic Algorithms)

  • 한승수
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.215-222
    • /
    • 2001
  • 신경망은 선형 시스템뿐만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾는 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.

  • PDF

레이져 유기형광법을 이용한 펄스 배리어 방전 공간에서의 NO분자에 대한 시·공간적 밀도변화 측정 (A Spatio-Temporal Density Measurement of NO Molecules in Pulsed Barrier Discharge Using Laser Induced Fluorescence)

  • 한상보
    • 조명전기설비학회논문지
    • /
    • 제24권5호
    • /
    • pp.160-168
    • /
    • 2010
  • 본 논문은 대기압 펄스 배리어 방전을 이용하여 NO 가스를 무해한 물질로 환원시키기 위하여 방전공간에서의 NO 분자의 생성 및 제거과정에 대하여 레이져 유기형광법을 이용하여 시 공간적인 밀도변화를 측정 및 분석하였다. 사용된 펄스 배리어 방전리액터는 진전속도가 $2.7{\times}10^6$[m/s] 인 1차 스트리머가 음극표면에 도착한 이후에 2차 스트리머가 양극 부근에 발생되었다. 그리고, 펄스 레이져에 의하여 NO 분자만을 효율적으로 상위준위로 여기시키기 위하여 Nd:Yag 및 염료 레이져를 복합하여 226[nm]의 자외광을 방전공간으로 도입하였으며, NO 분자만을 $A^2{\Sigma}^+{\leftarrow}X^2{\prod}$(0,0)으로 여기시키고, 여기된 분자들이 낮은 준위 $A^2{\Sigma}^+{\rightarrow}X^2{\prod}$(0,2), (0,3)로 복귀됨에 따라 방출되는 주요한 형광신호를 측정하였다. NO 분자의 시 공간적 변화 측정결과로부터 NO 가스를 효율적으로 제거하기 위해서는 산소농도를 가능한 2 [%]이하로 낮추고, 2차 스트리머 진전에 의해서 충분하게 방전공간에서 NO 환원반응을 유발할 수 있도록 제어하는 것이 필요하다고 판단된다.

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

SARS-CoV-2 Antibody Neutralization Assay Platforms Based on Epitopes Sources: Live Virus, Pseudovirus, and Recombinant S Glycoprotein RBD

  • Endah Puji Septisetyani;Pekik Wiji Prasetyaningrum;Khairul Anam;Adi Santoso
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.39.1-39.18
    • /
    • 2021
  • The high virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that emerged in China at the end of 2019 has generated novel coronavirus disease, coronavirus disease 2019 (COVID-19), causing a pandemic worldwide. Every country has made great efforts to struggle against SARS-CoV-2 infection, including massive vaccination, immunological patients' surveillance, and the utilization of convalescence plasma for COVID-19 therapy. These efforts are associated with the attempts to increase the titers of SARS-CoV-2 neutralizing Abs (nAbs) generated either after infection or vaccination that represent the body's immune status. As there is no standard therapy for COVID-19 yet, virus eradication will mainly depend on these nAbs contents in the body. Therefore, serological nAbs neutralization assays become a requirement for researchers and clinicians to measure nAbs titers. Different platforms have been developed to evaluate nAbs titers utilizing various epitopes sources, including neutralization assays based on the live virus, pseudovirus, and neutralization assays utilizing recombinant SARS-CoV-2 S glycoprotein receptor binding site, receptor-binding domain. As a standard neutralization assay, the plaque reduction neutralization test (PRNT) requires isolation and propagation of live pathogenic SARS-CoV-2 virus conducted in a BSL-3 containment. Hence, other surrogate neutralization assays relevant to the PRNT play important alternatives that offer better safety besides facilitating high throughput analyses. This review discusses the current neutralization assay platforms used to evaluate nAbs, their techniques, advantages, and limitations.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Copper Interconnection and Flip Chip Packaging Laboratory Activity for Microelectronics Manufacturing Engineers

  • Moon, Dae-Ho;Ha, Tae-Min;Kim, Boom-Soo;Han, Seung-Soo;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.431-432
    • /
    • 2012
  • In the era of 20 nm scaled semiconductor volume manufacturing, Microelectronics Manufacturing Engineering Education is presented in this paper. The purpose of microelectronic engineering education is to educate engineers to work in the semiconductor industry; it is therefore should be considered even before than technology development. Three Microelectronics Manufacturing Engineering related courses are introduced, and how undergraduate students acquired hands-on experience on Microelectronics fabrication and manufacturing. Conventionally employed wire bonding was recognized as not only an additional parasitic source in high-frequency mobile applications due to the increased inductance caused from the wiring loop, but also a huddle for minimizing IC packaging footprint. To alleviate the concerns, chip bumping technologies such as flip chip bumping and pillar bumping have been suggested as promising chip assembly methods to provide high-density interconnects and lower signal propagation delay [1,2]. Aluminum as metal interconnecting material over the decades in integrated circuits (ICs) manufacturing has been rapidly replaced with copper in majority IC products. A single copper metal layer with various test patterns of lines and vias and $400{\mu}m$ by $400{\mu}m$ interconnected pads are formed. Mask M1 allows metal interconnection patterns on 4" wafers with AZ1512 positive tone photoresist, and Cu/TiN/Ti layers are wet etched in two steps. We employed WPR, a thick patternable negative photoresist, manufactured by JSR Corp., which is specifically developed as dielectric material for multi- chip packaging (MCP) and package-on-package (PoP). Spin-coating at 1,000 rpm, i-line UV exposure, and 1 hour curing at $110^{\circ}C$ allows about $25{\mu}m$ thick passivation layer before performing wafer level soldering. Conventional Si3N4 passivation between Cu and WPR layer using plasma CVD can be an optional. To practice the board level flip chip assembly, individual students draw their own fan-outs of 40 rectangle pads using Eagle CAD, a free PCB artwork EDA. Individuals then transfer the test circuitry on a blank CCFL board followed by Cu etching and solder mask processes. Negative dry film resist (DFR), Accimage$^{(R)}$, manufactured by Kolon Industries, Inc., was used for solder resist for ball grid array (BGA). We demonstrated how Microelectronics Manufacturing Engineering education has been performed by presenting brief intermediate by-product from undergraduate and graduate students. Microelectronics Manufacturing Engineering, once again, is to educating engineers to actively work in the area of semiconductor manufacturing. Through one semester senior level hands-on laboratory course, participating students will have clearer understanding on microelectronics manufacturing and realized the importance of manufacturing yield in practice.

  • PDF

프로폴리스 섭취 후 흡연자의 임파구 DNA 손상도 및 항산화 상태의 변화: 이중맹검 교차 인체시험 (Changes in Lymphocyte DNA Damage and Antioxidant Status after Supplementing Propolis to Korean Smokers: A Placebo-Controlled, Double-Blind Cross-Over Trial)

  • 강명희;이혜진;김미경;성미경;권오란;박유경
    • Journal of Nutrition and Health
    • /
    • 제42권5호
    • /
    • pp.442-452
    • /
    • 2009
  • 흡연은 신체 내 산화 스트레스를 유발할 뿐 아니라 체내 항산화 상태를 악화시킨다. 따라서 흡연으로 인해 유도되는 산화 스트레스를 줄여주기 위한 여러 다양한 식품영양학적인 시도들이 되어져 왔다. 프로폴리스는 꿀벌이 자신의 생존과 번식을 유지하기 위하여 여러 식물에서 뽑아낸 수지에 꿀벌 자신의 침과 효소 등을 혼합하여 만든 천연 물질이다. 본 연구에서는 프로폴리스가 산화 스트레스로 인해 나타난 흡연자의 DNA 손상을 회복시키어 항산화 영양 상태를 개선시키는지를 보고자 하여 placebo를 사용하는 double- blind cross-over 인체시험을 수행하였다. 흡연자에게 800 mg의 프로폴리스와 placebo를 4주 섭취시킨 후 2주 washout period를 가진 뒤 다시 군을 바꾸어 교차시험으로 4주간 섭취시킨 후, comet assay에 의한 DNA 손상도 및 신체 내 항산화 효소 수준, 총 항산화력 및 항산화 비타민 상태를 분석하였다. 처음 2주 동안의 고갈기간 후에 흡연자 29명 (평균나이: 34.38 ${\pm}$ 1.73세)을 프로폴리스군과 위약군의 두 군으로 나누어 하루에 프로폴리스 또는 위약을 4주 동안 공급하였고 2주 동안의 washout 기간을 가진 후에 교차실험을 위해 대상자의 군을 바꾸어 다시 4주 동안 프로폴리스와 위약을 공급하였다. Comet assay로 분석한 대상자의 임파구 DNA 손상정도는 프로폴리스를 섭취한 군이나 위약을 섭취한 군 간에 차이를 보이지 않았으며 총 항산화 영양상태도 두 군 간에 차이가 나타나지 않았다. 적혈구 항산화 효소인 catalase, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) 활성도, 그리고 혈장 vitamin C와 tocopherol 수준도 프로폴리스군과 위약군 사이에 차이를 보이지 않았다. 따라서 흡연자에 있어서 프로폴리스의 항산화 효과를 평가하기 위해서는 앞으로 더 다양한 연구가 필요하리라고 생각된다.