• Title/Summary/Keyword: Plasma processing

Search Result 644, Processing Time 0.034 seconds

Control of Contact Angle by Surface Treatment using Sanning Plasma Method (주사 플라즈마 법(SPM)을 이용한 소수성 표면처리)

  • Kim, Young-Gi;Choi, Byoung-Jung;Yang, Sung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.10-13
    • /
    • 2010
  • The plasma processing technologies of thin film deposition and surface treatment technique have been applied to many industrial fields. This study is purposed Large-area uniformity and surface treatment on the stainless substrate. We treat surface of stainless by $CF_4$ plasma. $CF_4$ plasma is generated by using SPM(Scanning plasma method)which is kind a of CVD. Generally, SPM has been used for uniform surface treatment using a crossed electromagnetic field. The optimum discharge condition has been studied for the gas pressure, the magnetic flux density and the distance between substrate and electrodes. In result, contact angle is increased by surface treatment using $CF_4$ Plasma. Therefore we expect that SPM to control contact angle is applied to many industries.

Measurement of plasma potential by a biased cut off probe

  • Kim, Dae-Ung;Kim, Jeong-Hyeong;Seong, Dae-Jin;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.465-465
    • /
    • 2010
  • Cut off probe, the efficient method, can measure the plasma parameters like the plasma electron density and the electron temperature. Plasma potential is also one of the important parameters in plasma processing but cannot be measured by cut off probe yet. Thus we developed method to measure plasma potential by focusing on relation between bias on a tip and sheath around tip. The system consist of a ICP(Inductive Coupled Plasma) source, a Network analyzer and a bias tee that can be bridge apply DC voltage on the cut off probe tip. Plasma potential is identified by using this system. The results corresponded well with the measured results by single langmuir probe(SLP).

  • PDF

SYNTHESIS OF CARBON NITRIDE THIN FILMS BY PLASMA PROCESSING

  • Takai, Osamu;Taki, Yusuke;Kitagawa, Toshihisa
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.363-370
    • /
    • 1996
  • Carbon nitride is one of the new carbon materials which show interesting properties. After the theoretical calculation by LIu and Cohen, many researchers are trying to prepare $\beta$-$C_3N_4$ which may be harder than diamond. Many carbon nitride films synthesized till now by various methods are amorphous and the N/C ratios in the films are usually below 0.5. First we review shortly the synthesis of carbon nitride thin films by plasma, ion and laser processing. Second we report on the preparation of amorphous carbon nitride thin films by shielded arc ion plating and the structural and mechanical properties of the films.

  • PDF

Laser- Plume Effects on Radiation Energy Transfer in Materials Processing (레이저 가공시 에너지 전달과 Plume 효과)

  • Kang, Kae-Myung;Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In laser materials processing, localized heating, melting and evaporation caused by focused laser radiation forms a vapor on the material surface. The plume is generally an unstable entity, fluctuating according to its own dynamics. The beam is refracted and absorbed as it traverses the plume, thus modifying its power density on the surface of the condensed phases. This modifies material evaporation and optical properties of the plume. A laser-produced plasma plume simulation is completed using axisymmetric, high-temperature gas dynamic model including the laser radiation power absorption, refraction, and reflection. The physical properties and velocity profiles are verified using the published experimental and numerical results. The simulation results provide the effect of plasma plume fluctuations on the laser power density and quantitative beam radius changes on the material surface. It is proved that beam absorption, reflection and defocusing effects through the plume are essential to obtain appropriate mathematical simulation results. It is also found that absorption of the beam in the plume has much less direct effect on the beam power density at the material surface than defocusing does and helium gas is more efficient in reducing the beam refraction and absorption effect compared to argon gas for common laser materials processing.

A Study on the Wear Resistance Characteristics of Anodic Oxide Films Formed on Aluminium alloy using a Plasma Electrolytic Oxidation (플라즈마 전해산화법에 의해 형성된 알루미늄 합금의 양극산화피막 내마모 특성에 관한 연구)

  • Jung, Woo-Chul;Jin, Yun-Ho;Choi, Jin-Ju;Yang, Jae-Kyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.381-386
    • /
    • 2018
  • In this study, plasma electrolytic oxidation (PEO) method was used to from anodic oxide films on Al alloy and their resistance and morphological characteristics were investigated as a function of film formation voltage and treatment time. Cross-sectional morphology and composition of the PEO films were analyzed by SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive Spectroscopy). The PEO films showed increased surface roughness and thickness with of film formation voltage and treatment time. The wear resistance was found to be the best for the PEO film formed for 5 min at 500V which is attributed to be denser structure relatively and lower surface roughness.

Study on the characteristics of the plasma induced by lap-joint $CO_2$ laser welding of automotive steel sheets (자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 발생되는 플라즈마 특성에 관한 연구)

  • 남기중;박기영;이경돈
    • Laser Solutions
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • In order to investigate the characteristics of the plasma induced by lap-joint CO$_2$ laser welding of automotive steel sheets, the effects of welding speed, shield gas flow rate, gap size, and laser beam defocus to plasma intensity emitted from keyhole have been investigated. The plasma light is measured by fiber and photodiode. Also, the plasma images were captured by the high speed digital camera in 1000frames/sec in order to correlate the plasma light signal with plasma pattern. From the results, it is observed that the difference of the plasma intensity for between the deep penetration and partial penetration exists from 1.2 to 2 times. The plasma light intensity decreased in case of the deep penetration Is observed due to the exhausting of the plasma gas under the sheet. On the other hand, under the conditions of the deep penetration, the plasma intensity is significantly increased by controling the conditions decreasing the penetration depth. It was specially founded that the effect of 0.3mm gap size at partial penetration condition is approximately similar to deep penetration in 0mm gap. It is concluded that the plasma intensity is able to evaluate the penetration depth in lap-joint welding and appears to offer the most straightforward correlation to the welding process.

  • PDF

Surface Characteristics of TiC Layer Formed on Ti Alloys by Plasma Ion Carburizing (플라즈마 이온 확산법에 의해 타이타늄 합금 표면층에 형성된 TiC층에 관한 연구)

  • Lee, Doh-Jae;Choi, Dap-Chon;Yang, Hyeon-Sam;Jung, Hyun-Yeong;Bae, Dae-Sung;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.179-183
    • /
    • 2007
  • The TiC layer was formed on Ti and Ti alloys by plasma carburizing method. The main experimental parameters for plasma car boozing were temperature and time. XRD, EDX, hardness test and corrosion test were employed to analyze the evolution and material properties of the layer. The preferred orientation of TiC layers is (220) at treated temperature of $700^{\circ}C\;and\;880^{\circ}C$ However, it is changed to (200) at temperature of $800^{\circ}C$ The thickness of carbide layer increase with increasing carburizing temperature. Highest hardness of hardened layer formed on CP-Ti was obtained at the carburizing condition of processing temperature $880^{\circ}C$ and processing time 1080min. The corrosion potential of carburizing specimen was higher than untreated CP-titanium, and corrosion potential increased as carburizing temperature and time increased. Thus the corrosion resistance of CP-Ti was greatly enhanced after plasma carburizing treatment.

A Study in The Efficiency Improvement of Thermal Plasma Gas Processor Through Fluid Dynamics Analysis of Reaction Zone (반응부의 유동해석을 통한 열플라즈마 가스처리기의 효율 개선)

  • SeoMun, Jun;Chung, Jin-Do;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.669-673
    • /
    • 2011
  • This study explores the numerical analysis method of fluid dynamics in the reaction section to improve the gas processing efficiency in the hazardous gas removal by atmospheric thermal plasma. This study also intends to contribute in technology advance to improve the processing efficiency and make the process more stable. Numerical analysis of temperature distribution in the reaction section dependent on the change in flow velocity of Ar and plasma temperature change, which are major control variables in the cracking process of HFC-23 using arc plasma, was done. The characteristic of incoming oxygen by temperature suggested that when temperature increased to 1600K, 1700K, 1800K respectively, the range of cracking temperature 1500K increased to 75.0%, 83.3%, 90.2% respectively. The temperature change of Ar by velocity change was widest in the area higher than 1500K when the velocity was 2.5m/s; however, since there was no big difference when the velocity was 2m/s, it is believed that 2 m/s would be most proper.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF