• Title/Summary/Keyword: Plasma optics

Search Result 89, Processing Time 0.022 seconds

Contact Microscopy by Using Soft X-ray Radiation from Iodine Laser Produced Plasma (옥소레이저 플라즈마에서 발생된 연 X-선을 이용한 밀착현미경기술)

  • 최병일;김동환;공홍진;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 1990
  • Laser plasma was generated by a 1GW iodine photodissociation laser ($\lambda$=1.315$\mu\textrm{m}$, E=12.7J) whose output beam was focused on a molybdenum target surface. The experiment was conducted in a vacuum chamber under 1D-sTorr and several tens of laser shooting were necessary for sufficient exposure for the PBS resist of 111m thickness. Aluminium was coated on the top of the resist by 0.1$\mu\textrm{m}$ thickness which acts as an X-ray filter to cut off the visible and the ultraviolet lights. A bio-specimen was put directly on the aluminium coated resist and located at a distance of 3 cm from the X-ray source. The replicas of a steel mesh, spider's web. and a red blood cell were obtained by this technique and were observed by Nomarski microscope and SEM. The limitation of its resolution is determined by the X-ray source size and Fresnel diffraction effect, and its theoretical prediction is well matched with the experimental results. In this experiment, a resolution better than 0.1$\mu\textrm{m}$ could be obtained. ained.

  • PDF

The scanned point-detecting system for three-dimensional measurement of light emitted from plasplay panel (플라즈마 디스플레이 패널에서 방출되는 광의 3차원 측정을 위한 Scanned Point-Detecting System)

  • 최훈영;이석현;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • In this paper, we designed and made the scanned point detecting system for 3-dimensional measurement of the light emitted from plasma display panel (PDP) , and we measured and analyzed 3-dimensional light emitted from a real PDP by using this scanned point detecting system. The scanned point detecting system has a point detector with a pinhole. The light emitted from the source at the in-focus position can pass through the pinhole and be collected by detector. The light from other sources at outof-focus positions is focused at points in front of or behind the pinhole, and thus it is intercepted by the pinhole. Therefore, we can detect light information from a particular point of a PDP cell of 3-dimensional structure. We know the electric field distribution inside the PDP cell from the 3-dimensionallight intensity distribution measured by using the scanned point detecting system. As the Z axial measurement increases, the intensity of light detected increases and intensity of light detected on the inside edge of the ITa electrode is larger than outside edge of the ITa eletrode and gap of the ITa electrodes. Also, as the measurement point moves from one barrier rib to another, the detected light is weaker near to the barrier ribs than at the center between the barrier ribs. The emitted light is concentrated at the center between barrier ribs. ribs.

  • PDF

Fabrication and Properties of Au fine Particles Doped ZrO2 Thin Films by the Sol-gel Method (졸-겔법에 의한 Au 미립자 분산 ZrO2 박막의 제조와 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.475-480
    • /
    • 2003
  • Nanocomposite of Au doped ZrO$_2$ films was prepared, which could be used as non-linear optic materials, selective absorption and transmission films. After heat treatment of prepared thin film by dip-coating method, the characteristics were investigated by X-ray diffraction, UV-VIS Spectrometer, Atomic Force Microscopy (AFM) and Scanning Electron Microscope (SEM). Film thickness was about 150 nm, the Au particle size was 15~35 nm. The thin film had a smooth surface roughness about 1.06 nm. Nonlinearity optics was found that films showed absorption peak at 600~650 nm visible region by plasma resonance of Au metal particles.

Analysis of a Spun-CNT Based X-ray Source

  • Kim, Hyun Suk;Castro, Edward Joseph D.;Hun, Choong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.639-639
    • /
    • 2013
  • In this research we report the significant contribution of the as-spun multi-walled carbon nanotube (MWCNT) on the x-ray images formation using a low tube voltage x-ray source. The MWCNT, which was used for the fabrication of the spun CNT, was grown using a microwave plasma-enhanced chemical vapor deposition machine. Electrical-optics simulation software was utilized to determine the electron field emission trajectory of the triode-structure-as-spun CNT-based x-ray source. It was shown that a significant amount of converging electrons hit the target anode producing a clear x-ray image. These x-ray images where produced at a small amount of anode current of 0.67 mA at a tube voltage of 5 kV with the gate voltage of 0 V. Also, comparisons of the radiographs at various exposure times of the sample where analyzed with and without an x-ray dose filter. Results showed that spatially-resolved images were formed using the as-spun CNT at a low tube voltage with a $54-{\mu}m$ Al x-ray filter. This study can be used for low-voltage medical applications.

  • PDF

Nanofabrication of InP/InGaAsP 2D photonic crystals using maskless laser holographic method (레이저 홀로그래피 방법과 반응성 이온식각 방법을 이용한 InP/InGaAsP 광자 결정 구조 제작)

  • 이지면;이민수;이철욱;오수환;고현성;박상기;박문호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.309-312
    • /
    • 2004
  • Two-dimensionally arrayed nanocolumn lattices were fabricated by using double-exposure laser holographic method. The hexagonal lattice was formed by rotating the sample with 60 degree while the square lattice by 90 degree before the second laser-exposure. The size and period of nanocolumns could be controlled accurately from 125 to 145 nm in diameter and 220 to 290 nm in period for square lattice by changing the incident angle of laser beam. The reactive ion etching for a typical time of 30 min using CH$_4$/H$_2$ plasma enhanced the aspect-ratio by more than 1.5 with a slight increase of the bottom width of columns.

Numerical Analysis of Working Distance of Square-shaped Beam Homogenizer for Laser Shock Peening

  • Kim, Taeshin;Hwang, Seungjin;Hong, Kyung Hee;Yu, Tae Jun
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.221-227
    • /
    • 2017
  • To apply a square-shaped beam homogenizer to laser shock peening, it should be designed with a long working distance and by considering metal targets with various shapes and textures. For long working distances, a square-shaped beam homogenizer with a long depth of focus is required. In the range of working distance, the laser beam is required to have not only high efficiency but high uniformity, in other words, a good peening quality is guaranteed. In this study, we defined this range as the working distance for laser shock peening. We have simulated the effect of some parameters on the working distance. The parameters include the focal length of the condenser lens, pitch size of the array lens, and plasma threshold of the metal. The simulation was performed through numerical analysis by considering the diffraction effect.

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Micromachining Characteristics inside Transparent Materials using Femtoseocond Laser Pulses (펨토초 레이저에 의한 투명 유리내부 미세가공특성)

  • Nam Ki-Gon;Cho Sung-Hak;Chang Won-Seok;Na Suck-Joo;Whang Kyung-Hyun;Kim Jae-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.190-196
    • /
    • 2006
  • Transparent materials are widely used in the fields of optic parts and bio industry. We have experiment to find out the characteristics of the micromachining inside transparent materials using femtosecond laser pulses. With its non-linear effects by very high peak intensity, filament (plasma channel) was formed by the cause of the self-focusing and the self-defocusing. Physical damage could be found when the intensity is high enough to give rise to the thermal stress or evaporation. At the vicinity of the power which makes the visible damage or modification, the structural modification occurs with the slow scanning speed. According to the polarization direction to the scanning direction, the filament quality is quite different. There is a good quality when the polarization direction is parallel to the scanning direction. For fine filament, we could suggest the conditions of the high numerical aperture lens, the short shift of focusing point, the low scanning speed and the low power below 20 mW. As the examples of optics parts, we fabricated the fresnel zone plate with the $225{\mu}m$ diameter and Y-bend optical wave guide with the $5{\mu}m$ width.

The output characteristics of Ti:Sapphire laser pumped by dense plasma light (고밀도 플라즈마 광에 의한 Ti:SAPPHIRE 레이저의 동작)

  • 허서구;양호근;김명환;손연규;윤지홍
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.157-161
    • /
    • 1999
  • A Ti:Sapphire laser pumped by the HCP has been designed and fabricated to study the optimal pumping conditions for lasing. The fluorescence energy converter LD-490 has been used. The result showed that the threshold energy of Ti:Sapphire laser is 1.39 KJ and the best efficiency is $7.13{\times}10^{-3}$% at the concentration $1.0{times}10^{-3}$ Mol/l of LD-490 dye. However, the efficiencies were decreased with the decrease of dye concentrations. The maximum output energy was obtained at 50 Torr Ar pressure, when the input voltage was 15 kV. As a convert dye, BBQ, was added to LD-490 with the rate of 1:1, the output energy was increased, whereas the thereshold energy was decreased as 1.17 kJ.

  • PDF

A Novel Classification of Polymorphs Using Combined LIBS and Raman Spectroscopy

  • Han, Dongwoo;Kim, Daehyoung;Choi, Soojin;Yoh, Jack J.
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.402-411
    • /
    • 2017
  • Combined LIBS-Raman spectroscopy has been widely studied, due to its complementary capabilities as an elemental analyzer that can acquire signals of atoms, ions, and molecules. In this study, the classification of polymorphs was performed by laser-induced breakdown spectroscopy (LIBS) to overcome the limitation in molecular analysis; the results were verified by Raman spectroscopy. LIBS signals of the $CaCO_3$ polymorphs calcite and aragonite, and $CaSO_4{\cdot}2H_2O$ (gypsum) and $CaSO_4$ (anhydrite), were acquired using a Nd:YAG laser (532 nm, 6 ns). While the molecular study was performed using Raman spectroscopy, LIBS could also provide sufficient key data for classifying samples containing different molecular densities and structures, using the peculiar signal ratio of $5s{\rightarrow}4p$ for the orbital transition of two polymorphs that contain Ca. The basic principle was analyzed by electronic motion in plasma and electronic transition in atoms or ions. The key factors for the classification of polymorphs were the different electron quantities in the unit-cell volume of each sample, and the selection rule in electric-dipole transitions. The present work has extended the capabilities of LIBS in molecular analysis, as well as in atomic and ionic analysis.