• 제목/요약/키워드: Plasma implantation

검색결과 153건 처리시간 0.025초

Efficiency of an SCM415 Alloy Surface Layer Implanted with Nitrogen Ions by Plasma Source Ion Implantation

  • Lyu, Sung-Ki;He, Hui-Bo;Lu, Long;Youn, Il-Joong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.47-50
    • /
    • 2006
  • SCM415 alloy was implanted with nitrogen ions using plasma source ion implantation (PSII), at a dose range of $1{\times}10^{17}\;to\;6{\times}10^{17}\;N^+cm^{-2}$ Auger electron spectrometry (AES) was used to investigate the depth profile of the implanted layer. Friction and wear tests were carried out on a block-on-ring wear tester. Scanning electron microscopy (SEM) was used to observe the micro-morphology of the worn surface. The results revealed that after being implanted with nitrogen ions, the frictional coefficient of the surface layer decreased, and the wear resistance increased with the nitrogen dose. The tribological mechanism was mainly adhesive, and the adhesive wear tended to become weaker oxidative wear with the increase in the nitrogen dose. The effects were mainly attributed to the formation of a hard nitride precipitate and a supersaturated solid solution of nitrogen in the surface layer.

Plasma Immersion Ion Implantation을 적용한 알루미늄합금의 방열 및 내부식특성에 관한 연구

  • 김정효;김승진;차병철;김선광;손근용;권아람
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.247-247
    • /
    • 2012
  • 기존형광등보다 에너지소비가 적고, 수명이 길다는 장점을 가진 LED소자는 조명분야뿐만 아니라 선박 및 해양플랜트시장에까지 적용분야가 확대되고 있다. 그러나 LED소자의 수명연장 및 제품신뢰성을 위해서 방열에 관한 연구가 필수적이며 특히, 해양환경적용을 위해서는 내부식성을 요구하는 방열 재료개발에 대한 연구가 필요하다. 일반적으로 방열판소재로 사용되는 알루미늄의 경우 열전도도가 우수하며, 대기 중에서 쉽게 생기는 자연산화막보다 내부식특성을 향상시키기 위해 현재 국내 외의 표면처리 방법으로 전기화학적 방법을 이용한 Anodizing기술을 적용하고 있다. 하지만, Anodizing에 사용되는 질산과 황산액을 처리하는 과정에서 유독물질을 발생시킴으로 유해물질사용제한 등 국제적으로 환경규제가 강화되고 있어 Anodizing기술의 적용이 제한적인 단점이 있다. 본 연구에서는 친환경적 기술인 Plasma Immersion Ion Implantation (PIII)방식을 사용하여 알루미늄표면에 $Al_2O_3$을 형성하였다. 최적의 산화막증착 조건을 찾기 위해 Gas Flow양, Pulse Voltage, 공정온도, 시간 등을 변수로 실험을 진행하였다. SIMS (Secondary ion mass spectroscopy)를 통해 $Al_2O_3$ 박막두께 및 Oxygen의 정량분석을 하였으며, Anodizing처리된 알루미늄시편과 열전도특성과 내부식특성을 비교하기 위해 각각 Hot Disk 열전도율측정기와 Salt water tester chamber를 사용하였다.

  • PDF

WC-Co 공구의 이온 주입에 따른 표면층 및 가공된 표면거칠기 특성 (Characteristics of Machined Surface Roughness and Surface Layers of WC-Co Tools with Plasma Source Ion Implantation)

  • 강성기;김영규;왕덕현;전영록;김원일
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.106-113
    • /
    • 2010
  • The most suitable condition for plasma source ion implantation(PSII) was found based on the study of the characteristics of PSIIed tool and machined surfaces. The depth analysis according to the chemical bonding state of elements and surface component elements through the XPS and SIMS, was conducted to find the improved property of the PSIIed surface. Due to the diffusion of PSII, the nitrogen was found up to a depth of about 150nm according to the supplied voltage and ion implanted time. The deep diffusion by nitrogen caused the surface modification, but the formation of oxide component was found due to the residual gas contamination on the surface. Statistical method of ANOVA was conducted to find the effects of spindle speed and feed rate in interaction for machined surface roughness with PSIIed tools. The surface modification was found largely occurred by the nitrogen implanted surface with 2 hours for 27kV, 35kV and 43kV.

이온주입 제어에 의한 재료특성 개선에 관한 연구 (A Study on Improvement of Material Characteristics by Control of Ion Implantation)

  • 양영준;이치우;후지타 카즈히사
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1178-1184
    • /
    • 2008
  • In this study, techniques of ion implantation were used in order to improve the characteristics of metal materials such as the oxidation and wear resistant. In particular it is necessary to develope their oxidation and wear resistant that could be used in severe environmental conditions. There are mainly two elementary technologies including ion implantation and/or thin film coating. Ion implantation method was performed for surface modification. As a result, it was found that some ion implantations methods such as Nb, high-temperature Nb ion implantation and Nb+C combined implantation are somewhat effective for improving the oxidation resistance of TiAl alloy. Furthermore, the fluorine PBII treatment is more effective for improving the oxidation resistance of the TiAl alloy with three-dimensional shapes. The implantation of boron ion into thin film of TiN was also effective for improving the properties of materials like high temperature wear resistance. TiCrN film was applied to the actual seal ring for steam turbines, and it was observed that its sliding property showed a successfully good performance.

Prostaglandin $F_2{\alpha}$투여가 임신 Rat의 생식에 미치는 영향 (The Effect of Exogenous Prostaglandin $F_2{\alpha}$ on the Reproduction of Pregnant rats)

  • 김영홍
    • 한국임상수의학회지
    • /
    • 제16권2호
    • /
    • pp.389-396
    • /
    • 1999
  • Pregnant rats were treated at various stages of gestation with prostaglandin analogue, cloprostenol alone or concomitant with HCG to study effects on termination of gestation and plasma estrogen and progesterone. Cloprostenol (90 or 180 mg/kg) was administered alone on 1~3, 4~6, 7~9, 9~11 or 11~13 consecutive days of gestation twice a day and in combination with HCG (50 or 100 IU/day) on days of 1~3 or 7~9 once a day. Rats were autopsied on day 21 of gestation or at 6, 12 or 24 hours after treatment on day 6 or 9, respectively. Cloprostenol was found to be nearly 100% effective in preventing implantation, destroying viable fetuses and causing preimplantation losses, but in early gestation, on days 1-3, there was little effect. And when cloprostenol administered concomitant with HCG, corpora lutea were significantly increased, implantation sites and viable fetuses significantly decreased, and pre-and post-implantation losses significantly increased in most cases. Plasma concentrations of estradiol and progesterone were significantly decreased by administering cloprostenol, and estradiol concentration significantly decreased but progesterone significantly increased by administering of cloprostenol concomitant with HCG. It is suggested that cloprostenol was more effective in terminating pregnancy than a combination of cloprostenol and HCG in the rat.

  • PDF

GnRH를 단독으로 또는 PMSG와 동시에 투여했을 때 임신 랫드의 태아에 미치는 영향 (Effects of Administration of GnRH Alone and Concomitant with PMSG on the Fetus in Pregnant Rats)

  • 김영홍;이근우;손창호
    • 한국임상수의학회지
    • /
    • 제19권3호
    • /
    • pp.322-327
    • /
    • 2002
  • The effect of GnRH alone and concomitant with PMSG on the prevention of implantation. termination of pregnancy, and concentration of plasma progesterone were studied in pregnant rats. GnRH 50, 100 or 200 ug alone and concomitant with PMSG 25 or 50 IU were administered once on day 2 or 9 of gestation, respectively. Rats were autopsied on days 7 or 20. Administration of GnRH on day 2 did not result in the prevention of implantation and termination of pregnancy but resulted in termination of pregnancy administering on day 9. Administration of GnRM concomitant with PMSG on day 2 or 9 resulted in prevention of implantation and termination of pregnancy, but injection of GnRH 50 ug concomitant with PMSG 25 IU on day 9 had only one live fetus. Administration of GnRH alone and concomitant with PMSG on day 2 had no effect on the concentration of plasma progesterone determining on day 7. Administration of GnRH concomitant with PMSG on day 2 resulted in decrease of progesterone level determining on day 20 but GnRH alone was normal level. Administration of GnRH alone and concomitant with PMSG on day 9 resulted in decrease of the concentration of progesterone but was normal concentration administering GnRH 50 ug concomitant with PMSG 25 IU.

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

플라즈마 잠김 이온 주입에 대한 플라즈마 덮개의 해석 (Sheath analysis for a plasma immersion ion implantation)

  • 김영권;김영삼;조대근;최은하;조광섭
    • 한국진공학회지
    • /
    • 제7권4호
    • /
    • pp.381-389
    • /
    • 1998
  • 플라즈마 잠김 이온 주입에서 플라즈마 덮개의 동력학에 대한 모델로부터 시료면에 주입되는 이온 전류밀도의 시간적인 변화를 해석하였다. 시료에 주입되는 이온의 전류밀도 는 플라즈마 덮개의 형성이후 특정 시간에 최대값을 갖게되고, 점차 줄어든다. 이러한 이온 주입 전류밀도의 변화를 이온의 충돌, 시료 면의 충전시간, 그리고 시료 면에 인가되는 파형 에 대하여 나타내었다.

  • PDF

플라즈마 질소 이온주입한 오스테나이트 스테인레스 강의 표면특성 (Surface Properties of Plasma Nitrogen Ion Implanted Stainless Steel)

  • 김광훈;;이홍식;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2253-2255
    • /
    • 1999
  • Plasma source ion implantation (PSII) is a non-line-of-sight technique for surface modification of materials which is effective for non-planar targets. Properties such as hardness, corrosion resistance, wear resistance and friction can be improved without affecting the bulk properties of the material. Type 304 austenitic stainless steel was treated by nitrogen plasma ion implantation at a target bias of -50kV. Surface properties, including microhardness and ion depth profile, were studied.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF