• Title/Summary/Keyword: Plasma etch rate

Search Result 381, Processing Time 0.028 seconds

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

A Study on the Etching Characateristics of TiW Films using BCl$_3$/SF6/ gas chemistries (BCl$_3$/SF6 gas chemistries에 의한 TiW막의 식각특성 연구)

  • 권광호;김창일;윤선진;김상기;백규하;남기수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.1-8
    • /
    • 1997
  • The surface properties after plasma etching of TiW alloy using the chemistries of BCl$_{3}$ and SF$_{6}$ gases with varying mixing ratio have been investigated using XPS(X-ray photoelectron spectrocopy). The elements existed on the etched sampled have been extracted with BCL$_{3}$/SF$_{6}$ ratio and their chemical binding states have also been analysed. It was confirmed that the thickness of native oxide formed on the TiW films is thinner than 10nm by using Ar sputtering. At the same time, the roughness of etched surface has been esamnied using AFM (atomic force microscopy). on the basis of the basis of this results, the relations between the caanges of oxygen contents detected by XPS and the rouhness of etched surface have been discussed. And the etch rate and etched profile of Tiw films have been examined and the changes of the etch rate and etched prfile have been discussed with XPS results. From XPS results, the role of passivation layer consisted of Ti-S compound with XPS results. From XPS results, the role of passivation layer consisted of Ti-S compound has been proposed. Ti-S compound seems to make a role of passivation layer that surpresses Ti-O formation.ion.

  • PDF

The Patterning of Polyimide Thin Films for the Additive $CF_4$ gas ($CF_4$ 첨가에 따른 polyimide 박막의 패터닝 연구)

  • Kang, Pil-Seung;Kim, Chang-Il;Kim, Sang-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.209-212
    • /
    • 2001
  • Polyimide(PI) films have been considered as the interlayer dielectric materials due to low dielectric constant, low water absorption, high gap-fill and planarization capability. The PI mm Was etched with using inductively coupled plasma (ICP). The etching characteristics such as etch rate and selectivity were evaluated to gas mixing ratio. High etch rate was $8300{\AA}/min$ and vertical profile was approximately acquired $90^{\circ}$ at $CF_{4}/(CF_{4}+O_{2})$ of 0.2. The selectivies of polyimide to PR and $SiO_{2}$ were 1.2, 5.9, respectively. The etching profiles of PI films with an aluminum pattern were measured by a scanning electron microscope (SEM). The chemical states on the PI film surface were investigated by x-ray photoelectron spectroscopy (XPS). Radical densities of oxygen and fluorine in different gas mixing ratio of $O_{2}/CF_{4}$ were investigated by optical emission spectrometer (OES).

  • PDF

Dry etching of polycarbonate using O2/SF6, O2/N2 and O2/CH4 plasmas (O2/SF6, O2/N2와 O2/CH4 플라즈마를 이용한 폴리카보네이트 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, S.H.;Cho, G.S.;Song, H.J.;Jeon, M.H.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We studied plasma etching of polycarbonate in $O_2/SF_6$, $O_2/N_2$ and $O_2/CH_4$. A capacitively coupled plasma system was employed for the research. For patterning, we used a photolithography method with UV exposure after coating a photoresist on the polycarbonate. Main variables in the experiment were the mixing ratio of $O_2$ and other gases, and RF chuck power. Especially, we used only a mechanical pump for in order to operate the system. The chamber pressure was fixed at 100 mTorr. All of surface profilometry, atomic force microscopy and scanning electron microscopy were used for characterization of the etched polycarbonate samples. According to the results, $O_2/SF_6$ plasmas gave the higher etch rate of the polycarbonate than pure $O_2$ and $SF_6$ plasmas. For example, with maintaining 100W RF chuck power and 100 mTorr chamber pressure, 20 sccm $O_2$ plasma provided about $0.4{\mu}m$/min of polycarbonate etch rate and 20 sccm $SF_6$ produced only $0.2{\mu}m$/min. However, the mixed plasma of 60 % $O_2$ and 40 % $SF_6$ gas flow rate generated about $0.56{\mu}m$ with even low -DC bias induced compared to that of $O_2$. More addition of $SF_6$ to the mixture reduced etch of polycarbonate. The surface roughness of etched polycarbonate was roughed about 3 times worse measured by atomic force microscopy. However examination with scanning electron microscopy indicated that the surface was comparable to that of photoresist. Increase of RF chuck power raised -DC bias on the chuck and etch rate of polycarbonate almost linearly. The etch selectivity of polycarbonate to photoresist was about 1:1. The meaning of these results was that the simple capacitively coupled plasma system can be used to make a microstructure on polymer with $O_2/SF_6$ plasmas. This result can be applied to plasma processing of other polymers.

Etching Characteristics of GST thin film using Inductively Coupled Plasma of $Cl_2$/Ar gas mixtures ($Cl_2/Ar$ 유도결합 플라즈마를 이용한 GST 박막의 식각 특성)

  • Kim, Yun-Ho;Park, Eun-Jin;Park, Hyung-Ho;Min, Nam-Ki;Hong, Suk-In;Kown, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.65-66
    • /
    • 2005
  • Etching characteristics of $Ge_2Sb_2Te_5$ (GST) films were investigated using $Cl_2$/Ar inductively coupled plasma.We examined the etching characteristics such as etching rate and selectivity over oxide films of GST films using inductively coupled plasma (ICP) with various etching parameters such as $Cl_2$/Ar gas mixing ratios, ICP source power, pressure, and bias power. The maximum etch rate of GST film was $2,815{\AA}$/min and the selectivity higher than 12:1 over the oxide films was also obtained at the $Cl_2$ flow rates of 40 sccm.

  • PDF

A study on the oxide etching using multi-dipole type magnetically enhanced inductively coupled plasmas (자장강화된 유도결합형 플라즈마를 이용한 산화막 식각에 대한 연구)

  • 안경준;김현수;우형철;유지범;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.403-409
    • /
    • 1998
  • In this study, the effects of multi-dipole type of magnets on the characteristics of the inductively coupled plasmas and $SiO_2$ etch properties were investigated. As the magnets, 4 pairs of permanent magnets were used and, to etch $SiO_2, C_2F_6, CHF_3, C_4F_8, H_2$, and their combinations were used. The characteristics of the magnetized inductively coupled plasmas were investigated using a Langmuir probe and an optical emission spectrometer, and $SiO_2$ etch rates and the etch selectivity over photoresist were measured using a stylus profilometer. The use of multi-dipole magnets increased the uniformity of the ion density over the substrate location even though no significant increase of ion density was observed with the magnets. The use of the magnets also increased the electron temperature and radical densities while reducing the plasma potential. When $SiO_2$ was etched using the fluorocarbon gases, the significant increase of $SiO_2$ etch rates and also the increase of etch uniformity over the substrate were obtained using the magnets. In case of gas combinations with hydrogen, $C_4F_8/H_2$ showed the highest etch rates and etch selectivities over photoresist among the gas combinations with hydrogen used in the experiment. By optimizing process parameters at 1000 Watts of inductive power with the magnets, the highest $SiO_2$ etch rate of 8000 $\AA$/min could be obtained for 50% $C_4F_8/50% H_2$.

  • PDF

Change the Properties of Amorphous Carbon Hardmask Film Prepared with the Variation of Process Parameters in Plasma Enhanced Chemical Vapor Depostion Systems

  • Kim, Seok Hwan;Yeo, Sanghak;Yang, Jaeyoung;Park, Keunoh;Hur, Gieung;Lee, Jaeho;Lee, Jaichan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.2-381.2
    • /
    • 2014
  • In this study the amorphous carbon films were deposited by PECVD at the substrate temperature range of 250 to $600^{\circ}C$, and the process conditions of higher and lower precursor flow rate, respectively. The temperature was a main parameter to control the density and mirco-structures of carbon films, and their's properties depended with the process temperatrue are changed by controlling precursor flow rate. The precursor feeding rate affect on the plasma ion density and a deposition reactivity. This change of film properties was obtained the instrinsic stress, FT-IR & Raman analysis, refractive index (RI) and ext. coef. (k) measured by ellipsometer. In the process conditions of lower and higher flow rate of precursor it had a different intrinsic stress as a function of the substrate temperature.

  • PDF

Analysis of Process Parameter dependency on the characteristics of high density fluoro carbon plasma using global model (글로벌 모델에 의한 저온 고밀도 플루오로카본 플라즈마 특성의 공정변수 의존성 해석)

  • Lee, Ho-Jun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.879-881
    • /
    • 1999
  • Radical and ion densities in a CF4 plasma have been calculated as a function of input power density. 9as pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and CF+ become dominant neutral and ionic radical at the high power condition. As the pressure increases. ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of CF4 feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of CF4 monotonically decreases with flow rate. which results in increase in CF3 and decrease in CF density. The calculation results show that the SiO2 etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

The Surface Damage of SBT Thin Film Etched in Cl2CF4/Ar Plasma (Cl2CF4/Ar 유도결합 플라즈마에 의해 식각된 SBT 박막의 표면 손상)

  • 김동표;김창일;이철인;김태형;이원재;유병곤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.570-575
    • /
    • 2002
  • $SrBi_2Ta_2O_9$ thin films were etched in $Cl_2/CF_4/Ar$ inductively coupled plasma (ICP). The maximum etch rate was 1300 ${\AA}/min$ at 900 W ICP power in Cl$_2$(20%)/$CF_4$(20%)/Ar(60%). As RF source power increased, radicals (F, Cl) and ion ($Ar^+$) increased. The influence of plasma induced damage during etching process was investigated in terms of P-E hysteresis loops, chemical states on the surface, surface morphology and phase of X-ray diffraction. The chemical states on the etched surface were investigated with X-ray spectroscopy and secondary ion mass spectrometry. After annealing $700^{\circ}C$ for 1 h in $O_2$ atmosphere, the decreased P-E hysteresises of the etched SBT thin films in Ar and $Cl_2/CF_4/Ar$ plasma were recovered.

Electrical Properties of Interlayer Low Dielectric Polyimide with Electron Cyclotron Resonance Etching Process (ECR 식각 공정에 따른 층간절연막 폴리이미드의 전기적 특성)

  • 김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.13-17
    • /
    • 2000
  • The electrical properties of polyimide for interlayer dielectric applications are investigated with ECR (Electron Cyclotron Resonance) etching process. ECR etching with $Cl_2$-based plasma, generally used for aluminum etching, results in an increase in the dielectric constant of polyimide, while $SF_{6}$ plasma exhibits a high polyimide etch rate and a reducing effect of the dielectric constant. The leakage current of the polyimide is significantly suppressed after plasma exposure. Combination of Al etching with $Cl_2$plasma and polyimide etching with $SF_{6}$ plasma is expected as a good tool for realizing the multilevel metallization structures.

  • PDF