• Title/Summary/Keyword: Plasma corrosion

Search Result 333, Processing Time 0.693 seconds

A study of model for nitrogen permeation in TIG welding of super duplex stainless steel (슈퍼듀플렉스 스테인리스강의 TIG 용접에서 질소 침투 모델에 관한 연구)

  • Lee, Jae-Hyoung;Jung, Byong-Ho;Cho, Sang-Myung;Jun, Jae-Ho
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.68-74
    • /
    • 2015
  • Superduplex stainless steels are important materials to the oil and gas industry, especially for off-shore production. TIG welding of super duplex stainless steels to obtain the optimal phase balance between austenite and ferrite is mainly achieved by controlling the cooling rate and the weld chemistry. The latter depends on the filler wire chosen and the shielding gas used. If TIG welding of superduplex stainless steels is performed with argon shielding gas only, then nitrogen gets lost from the weld pool, which can result in a ferrite-rich weld metal, with an inferior corrosion resistance than parent metal. In the present study, nitrogen permeation model from the shield gas which gets into the weld metal in DCEN-TIG welding has suggested. This plasma stream model shows characteristics of permeation of nitrogen ions into the molten metal due to the strong physical effect of plasma stream which formed by the arc pressure rather than the permeation of nitrogen ions caused by electric effect.

The Electrical Behavior of Plasma Sprayed Al2O3-TiO2 Coatings (플라즈마 용사된 Al2O3-TiO2 코팅의 전기적 특성)

  • Park, Sang-Jun;Lee, Sung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.788-793
    • /
    • 2017
  • Electrical behaviors of plasma-sprayed $Al_2O_3-TiO_2$ coatings have been investigated in terms of their $TiO_2$ content. On increasing the $TiO_2$ content from 6 to 30 wt%, the DC electrical conductivity increased by several orders of magnitude. From impedance spectroscopy analysis, the total conductivity of the grains and grain boundaries and their respective activation energies were determined without the electrode effects that could impede ionic transfer. An electron transference number was also estimated, ranging between 6.5% and 7.3% for 13 wt% $TiO_2$ and between 0.4% and 0.7% for 30 wt% $TiO_2$ in the coating. Because of the high electronic contribution to the total conductivity, the $Al_2O_3-TiO_2$ coating could be a new candidate material to obtain superior electrical conductivity as well as corrosion and wear resistances.

Thermal Stability of Al-Fe-X Alloy System Prepared by Mechanical Alloying and Spark Plasma Sintering: II. Al-Fe-Cr and Al-Fe-Mo (기계적 합금화 및 스파크 플라즈마 소결에 의해 제조된 Al-Fe-X계 합금의 열적 안정성: II. Al-Fe-Cr and Al-Fe-Mo)

  • Lee, Hyun-Kwuon;Lee, Sang-Woo;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to $500^{\circC}$. Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as $Al_3Fe$ during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to $500^{\circC}$ comparing to those of Al-Fe alloy system.

Fabrication and Characteristic of ZrO2-8%Y2O3 Powder for Plasma Spray Coating Manufactured by Mechanical Mixing Method (기계적 혼합에 의한 플라즈마 용사용 ZrO2-Y2O3 분말의 제조 및 특성)

  • Han, Jin-Won;Kwak, Chan-Won;Woo, Kee-Do
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.357-362
    • /
    • 2014
  • Thermal barrier coatings(TBCs) are being applied in many industrial fields such as thermal power generation, aviation and seasonal fields. $ZrO_2-Y_2O_3$(8%) thermal spray coating powders are commercially used as thermal-barrier coating materials to protect against oxidation and corrosion of heat-resistant alloys at elevated temperatures. Currently, $ZrO_2-Y_2O_3$(8%) thermal-spray powder is made using the industrial co-precipitation process, which is very complex and requires a lot of time. In this study, orthorhombic $ZrO_2$ and $Y_2O_3$ powders were fabricated by mechanical mixing, which is more economical than the co-precipitation process. A tetragonal, yttria-stabilized zirconia(YSZ) coating-layer was produced by plasma spraying, using orthorhombic $ZrO_2-Y_2O_3$(8%) powder. Our experimental results indicate that $ZrO_2-Y_2O_3$(8%) mixed powder can be used economically in industry because it is no longer necessary to make this powder by liquid and gas-phase methods.

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Aerosol Deposition Nozzle Design for Uniform Flow Rate: Divergence Angle and Nozzle Length

  • Kim, Jae Young;Kim, Young Jin;Jeon, Jeong Eun;Jeon, Jun Woo;Choi, Beom Soo;Choi, Jeong Won;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.38-44
    • /
    • 2022
  • Plasma density in semiconductor fabrication equipment becomes higher to achieve the improved the throughput of the process, but the increase of surface corrosion of the ceramic coated chamber wall has been observed by the increased plasma density. Plasma chamber wall coating with aerosol deposition prefer to be firm and uniform to prevent the potential creation of particle inside the chamber from the deformation of the coating materials, and the aerosol discharge nozzle is a good control factor for the deposited coating condition. In this paper, we investigated the design of the nozzle of the aerosol deposition to form a high-quality coating film. Computational fluid dynamics (CFD) study was employed to minimize boundary layer effect and shock wave. The degree of expansion, and design of simulation approach was applied to found out the relationship between the divergence angle and nozzle length as the key parameter for the nozzle design. We found that the trade-off tendency between divergence angle and nozzle length through simulation and quantitative analysis, and present the direction of nozzle design that can improve the uniformity of chamber wall coating.

Effect of AZ31 PEO Coating Layer Formation According to Alginic Acid Concentration in Electrolyte Solution

  • Kim, Min Soo;Kim, Jong Seop;Park, Su Jeong;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2022
  • This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.

Concentration of elemental ions released from non-precious dental casting alloys (치과주조용 비귀금속 합금의 금속 용출 수준)

  • Sakong, Joon;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Purpose: This study was to assess the extents of the release of metals from the non-precious alloys used for dental casting by measuring the differences in the extents of the release of metals by types of alloys, pH level and elapsed time. Methods: Uniform-sized specimens(10 each) were prepared according to the Medical Device Standard of the Korea Food and Drug Administration(2010) and International Standard Organization(ISO22674, 2006), using four types of alloys(one type of Ni-Cr and one type of Co-Cr used for fixed prosthesis, and one type of Ni-Cr and one type of Co-Cr used for removable prosthesis). A total of 12 metal-release tests were performed at one-day, three-day, and two-week intervals, for up to 20 weeks. The metal ions were quantified using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: The results showed that the extent of corrosion was higher in the ascending order of Jdium-$100^{(R)}$, Bellabond-$Plus^{(R)}$, Starloy-$C^{(R)}$, and Biosil-$F^{(R)}$. The lower the pH and the longer the elapsed time were, the greater the increase in metal corrosion. At pH 2.4, the release of Ni from Jdium-$100^{(R)}$, a Ni-Cr alloy, was up to 15 times greater than the release of Co from the Co-Cr alloy from two weeks over time, indicating that the Ni-Cr alloy is more susceptible to corrosion than the Co-Cr alloy. Conclusion: It is recommended that Co-Cr alloy, which is highly resistant to corrosion, be used for making dental prosthesis with a non-precious alloy for dental casting, and that non-precious alloy prosthesis be designed in such a way as to minimize the area of its oral exposure. For patients with non-precious alloy prostheses, a test of the presence or absence of periodontal tissue inflammation or allergic reaction around the prosthesis should be performed via regular examination, and education on the good management of the prosthesis is needed.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.