DOI QR코드

DOI QR Code

The Electrical Behavior of Plasma Sprayed Al2O3-TiO2 Coatings

플라즈마 용사된 Al2O3-TiO2 코팅의 전기적 특성

  • Park, Sang-Jun (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
  • 박상준 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2017.10.20
  • Accepted : 2017.10.31
  • Published : 2017.12.01

Abstract

Electrical behaviors of plasma-sprayed $Al_2O_3-TiO_2$ coatings have been investigated in terms of their $TiO_2$ content. On increasing the $TiO_2$ content from 6 to 30 wt%, the DC electrical conductivity increased by several orders of magnitude. From impedance spectroscopy analysis, the total conductivity of the grains and grain boundaries and their respective activation energies were determined without the electrode effects that could impede ionic transfer. An electron transference number was also estimated, ranging between 6.5% and 7.3% for 13 wt% $TiO_2$ and between 0.4% and 0.7% for 30 wt% $TiO_2$ in the coating. Because of the high electronic contribution to the total conductivity, the $Al_2O_3-TiO_2$ coating could be a new candidate material to obtain superior electrical conductivity as well as corrosion and wear resistances.

Keywords

References

  1. E. Klyatskina, L. Espinosa-Fernández, G. Darut, F. Segovia, M. D. Salvador, G. Montavon, and H. Agorges, Tribol. Lett., 59, 7 (2015). [DOI: https://doi.org/10.1007/s11249-015-0530-5]
  2. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings (Wiley, Hoboken, 2008).
  3. Th. Lampe, S. Eisenberg, and E. R. Cabeo, Surf. Coat. Technol., 174, 1 (2003). [DOI: https://doi.org/10.1016/S0257-8972(03)00473-0]
  4. Y. Wang, S. Jiang, M. Wang, S. Wang, T. D. Xiao, and P. R. Strutt, Wear, 237, 176 (2000). [DOI: https://doi.org/10.1016/S0043-1648(99)00323-3]
  5. L. T. Kabacoff, AMPITAC Newsl., 6, 37 (2002).
  6. L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, T. D. Xiao, and P. R. Strutt, Surf. Coat. Technol., 130, 1 (2000). [DOI: https://doi.org/10.1016/S0257-8972(00)00673-3]
  7. M. Wang and L. L. Shaw, Surf. Coat. Technol., 202, 34 (2007). [DOI: https://doi.org/10.1016/j.surfcoat.2007.04.057]
  8. N. B. Dahotre and S. Nayak, Surf. Coat. Technol., 194, 58 (2005). [DOI: https://doi.org/10.1016/j.surfcoat.2004.05.006]
  9. S. K. Jia, Y. Zou, J. Y. Xu, J. Wang, and L. Yu, Trans. Nonferrous Met. Soc. China, 25, 175 (2015). [DOI: https://doi.org/10.1016/S1003-6326(15)63593-2]
  10. V. Somani and S. J. Kalita, J. Am. Ceram. Soc., 90, 2372 (2007). [DOI: https://doi.org/10.1111/j.1551-2916.2007.01797.x]
  11. S. Addepalli, L. G. Kolla, and U. Suda, Mater. Sci. Semicond. Process., 57, 137 (2017). [DOI: https://doi.org/10.1016/j.mssp.2016.10.019]
  12. M. Nakamichi and H. Kawamura, Thermal Spray 2001: New Surfaces for a New Millenium (ASM International, Materials Park, OH, USA, 2001) p. 1039.
  13. J. R. Davis, Handbook of Thermal Spray Technology (ASM International, USA, 2004).
  14. P. Ctibor, Z. Pala, J. Sedlacek, V. Stengl, I. Pis, T. Zahoranova, and V. Nehasil, J. Therm. Spray Technol., 21, 425 (2012). [DOI: https://doi.org/10.1007/s11666-012-9747-0]
  15. G. M. Ingo, J. Am. Ceram. Soc., 74, 381 (1991). [DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06891.x]
  16. S. J. Park, J. K. Lee, Y. S. Oh, S. Kim, H. Kim, and S. M. Lee, J. Korean Ceram. Soc., 53, 641 (2016). [DOI: https://doi.org/10.4191/kcers.2016.53.6.641]
  17. R.S.S. Maki and Y. Suzuki, J. Ceram. Soc. Jpn., 124, 1 (2016). [DOI: https://doi.org/10.2109/jcersj2.15098]