• 제목/요약/키워드: Plasma Simulation

검색결과 484건 처리시간 0.033초

플라즈마 챔버의 특성 분석 및 최적 설계를 위한 가상의 시뮬레이션 환경 개발 (Development of Virtual Integrated Prototyping Simulation Environment for Plasma Chamber Analysis and Design (VIP-SEPCAD))

  • 김헌창;설용태
    • 반도체디스플레이기술학회지
    • /
    • 제2권4호
    • /
    • pp.9-12
    • /
    • 2003
  • This paper describes a newly developed simulation environment for analysis and design of a plasma processing chamber based on first principles including complicated physical and chemical interactions of plasma, fluid dynamics of neutrals, and transport phenomena of particles. Capabilities of our simulator, named VIP-SEPCAD (Virtual Integrated Prototyping Simulation Environment for Plasma Chamber Analysis and Design), are demonstrated through a two dimensional simulation of an oxygen plasma chamber. VIP-SEPCAD can provide plasma properties such as spatiotemporal profiles of plasma density and potential, electron temperature, ion flux and energy, etc. By coupling neutral and particle transport models with a three moment plasma model, VIP-SEPCAD can also predict spatiotemporal profiles of chemically reactive species and particles exist in plasma.

  • PDF

Three-Dimensional Particle-in-cell Simulation of Electron Cyclotron Resonance Plasma with Belt-type Magnet Assembly

  • Lee, Hui Jea;Kim, Seong Bong;Yoo, Suk Jae;Cho, Moohyun;Namkung, Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.242.1-242.1
    • /
    • 2014
  • The electron cyclotron resonance plasma source with a belt-type magnet assembly (BMA) is designed for effective plasma confinements. For characterizing the plasma source, the plasma parameters are measured by Langmuir probe. However, the plasma parameters and the motion of charged particles near the ECR zone are not easy to diagnostics, because of the high plasma density and temperature. Thus, as an alternative method, the electromagnetic simulation of the plasma source has been performed by using three-dimensional particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. For considering the limitation of simulation resources and time, the periodic boundary condition is applied and the coulomb collision is neglected. In this paper, we present the results of 3D PIC simulations of ECR plasmas with BMA and we compare them with the experimental results.

  • PDF

유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석 (Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation)

  • 차주홍;이호준
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

3D Plasma simulation을 이용한 Cylindrical Rotating Magnetron Sputtering Cathode 개발

  • 천용환;오지영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2013
  • Cylindrical Rotating Magnetron Sputtering Cathode (이하 Rotary Cathode)는 기존에 사용 되던 rectangular type 보다 Target 사용 효율이 높다는 큰 이점을 가지고 있다. 높은 Target 사용 효율은 비용 절감 효과와 직접적으로 관련 된다. 이번 연구는 3D Plasma simulation(PIC-MCC)을 통한 Target 사용 효율 80% 이상의 Rotary Cathode 개발을 목적으로 한다. Plasma simulation에 External Magnetic fields를 접목하여 Electron의 이동 궤적을 제어하였고, 생성된 Ion (Ar+)의 밀도 및 속도로 Plasma의 안정성과 Erosion 계산 구간을 선정 하였다. Target Erosion Profile은 Sputtering yield Data와 Target에 충돌한 Ion 정보를 사용하여 산출 하였으며, Sputtered Particles의 Deposition Profile은 계산된 Target Erosion Profile과 The cosine law of emission을 이용하여 계산 하였다. 실험 조건은 Plasma simulation의 초기조건 바탕으로 하여 2G size의 ITO Target을 대상으로 실험 하였다. 비 Erosion 영역 최소화하기 위해 Magnet Length를 변경하여 제작 적용 하였다. Simulation 계산 시간의 제약으로 인하여 simulation에서 생성된 최대 이온 밀도는 일반적으로 알려진 값 보다 적게 계산 되었지만, Simulation으로 예측한 Erosion Profile 및 Deposition Profile은 실험 값과 유사한 형태를 나타났으며, 실험 결과는 Target 사용 효율 80%이상의 결과를 보였다.

  • PDF

공차누적해석을 이용한 플라즈마 절단토치의 설계에 관한 연구 (Design of Plasma Cutting Torch by Tolerance Propagation Analysis)

  • 방용우;장희석;장희석;양진승
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.122-130
    • /
    • 2000
  • Due to the inherent dimensional uncertainty, the tolerances accumulate in the assembly of plasma cutting torch. Tolerance accumulation has serious effect on the performance of the plasma torch. This study proposes a statistical tolerance propagation model, which is based on matrix transform. This model can predict the final tolerance distributions of the completed plasma torch assembly with the prescribed statistical tolerance distribution of each part to be assembled. Verification of the proposed model was performed by making use of Monte Carlo simulation. Monte Carlo simulation generates a large number of discrete plasma torch assembly instances and randomly selects a point within the tolerance region with the prescribed statistical distribution. Monte Carlo simulation results show good agreement with that of the proposed model. This results are promising in that we can predict the final tolerance distributions in advance before assembly process of plasma torch thus provide great benefit at the assembly design stage of plasma torch.

  • PDF

정전 탐침법과 유체 시뮬레이션을 이용한 유도결합 Ar 플라즈마의 특성 연구 (Analysis of Inductively Coupled Plasma using Electrostatic Probe and Fluid Simulation)

  • 차주홍;이호준
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1211-1217
    • /
    • 2016
  • Discharge characteristics of inductively coupled plasma were investigated by using electrostatic probe and fluid simulation. The Inductively Coupled Plasma source driven by 13.56 Mhz was prepared. The signal attenuation ratios of the electrostatic probe at first and second harmonic frequency was tuned in 13.56Mhz and 27.12Mhz respectively. Electron temperature, electron density, plasma potential, electron energy distribution function and electron energy probability function were investigated by using the electrostatic probe. Experiment results were compared with the fluid simulation results. Ar plasma fluid simulations including Navier-Stokes equations were calculated under the same experiment conditions, and the dependencies of plasma parameters on process parameters were well agreed with simulation results. Because of the reason that the more collision happens in high pressure condition, plasma potential and electron temperature got lower as the pressure was higher and the input power was higher, but Electron density was higher under the same condition. Due to the same reason, the electron energy distribution was widening as the pressure was lower. And the electron density was higher, as close to the gas inlet place. It was found that gas flow field significantly affect to spatial distribution of electron density and temperature.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Simulation of Inductively Coupled $Ar/O_2$ Plasma; Effects of Operating Conditions on Plasma Properties and Uniformity of Atomic Oxygen

  • Park, Seung-Kyu;Kim, Jin-Bae;Kim, Heon-Chang
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.59-63
    • /
    • 2009
  • This paper presents two dimensional simulation results of an inductively coupled $Ar/O_2$ plasma reactor. The effects of operating conditions on the plasma properties and the uniformity of atomic oxygen near the wafer were systematically investigated. The plasma density had the linear dependence on the chamber pressure, the flow rate of the feed gas and the power deposited into the plasma. On the other hand, the electron temperature decreased almost linearly with the chamber pressure and the flow rate of the feed gas. The power deposited into the plasma nearly unaffected the electron temperature. The simulation results showed that the uniformity of atomic oxygen near the wafer could be improved by lowering the chamber pressure and/or the flow rate of the feed gas. However, the power deposited into the plasma had an adverse effect on the uniformity.

  • PDF

Characterization of inductively coupled Ar/CH4 plasma using tuned single langmuir probe and fluid simulation

  • 차주홍;한문기;김동현;이해준;이호준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.143.1-143.1
    • /
    • 2015
  • An inductively coupled plasma source driven by 13.56MHz was prepared for the deposition of a-C:H thin film. Properties of the plasma source are investigated by fluid simulation including Navier-Stokes equations and home-made tuned single Langmuir probe. Signal attenuation ratios of the Langmuir probe at first and second harmonic frequency were 13.56Mhz and 27.12Mhz respectively. Dependencies of plasma parameters on process parameters were agreed with simulation results. Ar/CH4 plasma simulation results shown that hydrocarbon radical densities have their lowest value at the vicinity of gas feeding line due to high flow velocity. For input power density of 0.07W/cm3, CH radical density qualitatively follows electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density. The result suggest that optimization of discharge power is important for controlling deposition film quality in high density plasma sources.

  • PDF

Comparative simulation of microwave probes for plasma density measurement and its application

  • 김대웅;유신재;김시준;이장재;김광기;이영석;염희중;이바다;김정형;오왕열
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF