• Title/Summary/Keyword: Plasma Polymer

Search Result 423, Processing Time 0.026 seconds

Dry etching of polycarbonate using O2/SF6, O2/N2 and O2/CH4 plasmas (O2/SF6, O2/N2와 O2/CH4 플라즈마를 이용한 폴리카보네이트 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, S.H.;Cho, G.S.;Song, H.J.;Jeon, M.H.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We studied plasma etching of polycarbonate in $O_2/SF_6$, $O_2/N_2$ and $O_2/CH_4$. A capacitively coupled plasma system was employed for the research. For patterning, we used a photolithography method with UV exposure after coating a photoresist on the polycarbonate. Main variables in the experiment were the mixing ratio of $O_2$ and other gases, and RF chuck power. Especially, we used only a mechanical pump for in order to operate the system. The chamber pressure was fixed at 100 mTorr. All of surface profilometry, atomic force microscopy and scanning electron microscopy were used for characterization of the etched polycarbonate samples. According to the results, $O_2/SF_6$ plasmas gave the higher etch rate of the polycarbonate than pure $O_2$ and $SF_6$ plasmas. For example, with maintaining 100W RF chuck power and 100 mTorr chamber pressure, 20 sccm $O_2$ plasma provided about $0.4{\mu}m$/min of polycarbonate etch rate and 20 sccm $SF_6$ produced only $0.2{\mu}m$/min. However, the mixed plasma of 60 % $O_2$ and 40 % $SF_6$ gas flow rate generated about $0.56{\mu}m$ with even low -DC bias induced compared to that of $O_2$. More addition of $SF_6$ to the mixture reduced etch of polycarbonate. The surface roughness of etched polycarbonate was roughed about 3 times worse measured by atomic force microscopy. However examination with scanning electron microscopy indicated that the surface was comparable to that of photoresist. Increase of RF chuck power raised -DC bias on the chuck and etch rate of polycarbonate almost linearly. The etch selectivity of polycarbonate to photoresist was about 1:1. The meaning of these results was that the simple capacitively coupled plasma system can be used to make a microstructure on polymer with $O_2/SF_6$ plasmas. This result can be applied to plasma processing of other polymers.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

The Properties of Hole Injection and Transport Layers on Polymer Light Emitting Diode (정공 주입층 및 수송층에 따른 고분자 유기발광다이오드의 특성 연구)

  • Shin, Sang-Baie;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • We fabricated the polymer light emitting diodes (PLEDs) with ITO/PEDOT:PSS/PVK/PFO:MEH-PPV/LiF/Al structures. The effect of the thickness of PEDOT:PSS hole injection layer(HIL) on the electrical and optical properties of PLEDs was investigated. In addition, PVK hole transport layer(HTL) was introduced in the PLED device, and compared the properties of the PLEDS with and without PVX layer. All organic film layers were prepared by the spin coating method on the plasma treated ITO/glass substrates. As the thickness of PEDOT:PSS film layer decreased from about 80 nm to 50 nm, the luminance of PLED device increased from $220cd/m^2$에서 $450cd/m^2$. This may be ascribed to the increased transportation efficiency of the holes into the emission layer of PLED. The maximum current density and luminance were obtained fir the PLED device with PVX hole transport layer, showing that the current density and luminance were $268mA/cm^2\;and\;540cd/m^2$ at 12V, respectively. This values were improved by about 14% and 22% in current density and luminance compared with the PLED device without PVK layer.

  • PDF

Cloning, Expression, and Polymerization Assay of FtsZ Protein from Staphylococcus aureus (Staphylococcus aureus FtsZ의 클로닝, 발현 및 폴리머 형성 활성 분석)

  • Son, Sang Hyeon;Lee, Dong Yun;Kim, Ye Jun;Ko, Sooho;Cho, Seong Jun;Jung, Hyo Cheol;Lee, Hyung Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.274-277
    • /
    • 2012
  • Cytokinesis is the final stage of cell division, dividing one mother cell into two daughter cells. For the cutting of a plasma membrane during bacterial cytokinesis, a tubulin homolog FtsZ protein is recruited from the cytoplasm to the division site. FtsZ protein polymerizes in a GTP-dependent manner and its N-terminal domain has a GTPase activity. In this study, we have begun to characterize FtsZ from Staphylococcus aureus (SA). Full-length SA FtsZ was cloned into pRSFDuet-1 vector and the clone was transformed into a BL21 (DE3) star cell. The recombinant SA FtsZ protein was purified using Ni-NTA affinity chromatography and dialysis. Using a spectrofluorometer, we showed that SA FtsZ undergoes a GTP-dependant polymerization in vitro. The polymer of the SA FtsZ protein disappeared after a few minutes, suggesting that the polymer is degraded as the GTP is consumed. This assay system may well be applied for inhibitor screening targeting S. aureus FtsZ.

Reaction of α-Fe2O3 Red Pigment and Transparent Dielectric Materials (적색안료인 α-Fe2O3와 투명 유전체의 반응)

  • Kim, Bong-Chul;Han, Yong-Soo;Song, Yoon-Ho;Suh, Kyung-Soo;Lee, Jin-Ho;Lee, Nam-Yang;Park, Lee-Soon;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • We searched thermal stability of ${\alpha}-Fe_2O_3$ using red color filter for display. In the PDP(Plasma Display Panel), the color filter layer is lied normally between front glass and transparent dielectric materials, so it might be needed to study the reaction of ${\alpha}-Fe_2O_3$ and transparent dielectric materials. The transparent dielectric materials containing ZnO has good transparency. Red colorlayer of ${\alpha}-Fe_2O_3$ contacted with dielectric material layer containing ZnO is changed to colorlessness over 500$^{\circ}$C because ZnO defuse ${\alpha}-Fe_2O_3$, the dielectric materials without ZnO, however, maintain red color at the same condition. We suggest that a layer contacting with ${\alpha}-Fe_2O_3$ red color layer has to lie with transparent dielectric materials without ZnO, then the materials containing ZnO is coated over to get color of ${\alpha}-Fe_2O_3$ for red color filter

Property of Nickel Silicides on ICP-CVD Amorphous Silicon with Silicidation Temperature (ICP-CVD 비정질 실리콘에 형성된 처리온도에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Jong-Ryul;Choi, Young-Youn;Park, Jong-Sung;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.303-310
    • /
    • 2008
  • We fabricated hydrogenated amorphous silicon(a-Si:H) 140 nm thick film on a $180\;nm-SiO_2/Si$ substrate with an inductively-coupled plasma chemical vapor deposition(ICP-CVD) equipment at $250^{\circ}C$. Moreover, 30 nm-Ni film was deposited with a thermal-evaporator sequently. Then the film stack was annealed to induce silicides by a rapid thermal annealer(RTA) at $200{\sim}500^{\circ}C$ in every $50^{\circ}C$ for 30 minuets. We employed a four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), and scanning probe microscope(SPM) in order to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure evolution, and surface roughness, respectively. We confirmed that nano-thick high resistive $Ni_3Si$, mid-resistive $Ni_2Si$, and low resistive NiSi phases were stable at the temperature of <300, $350{\sim}450^{\circ}C$, and >$450^{\circ}C$, respectively. Through SPM analysis, we confirmed the surface roughness of nickel silicide was below 12 nm, which implied that it was superior over employing the glass and polymer substrates.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

The Effect of Plasma Treatment on the Properties of GZO Thin Films Fabricated on Polymer Substrate (플라즈마 전처리 조건에 따른 폴리머 기판위에 증착된 GZO 박막의 특성변화)

  • Aeo, Woong-Joon;Park, Seung-Beom;Lee, Seok-Jin;Kim, Byeong-Guk;Lim, Dong-Gun;Park, Jea-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.138-139
    • /
    • 2009
  • 폴리머 기판위에서 ICP-RIE 방법을 이용하여 $O_2$ 플라즈마 전처리효과에 따른 GZO박막의 전기적, 광학적인 특성을 고찰 하였다. ICP-RIE 방법을 이용하여 폴리머 기판 위에 $O_2$ 플라즈마 전처리의 공정 값은 공정압력은 20 mTorr, 파워는 100 W로 하고 변수로는 시간을 60초 ~ 600초로 하였다. $O_2$ 플라즈마 전처리한 기판위에 RF Sputtering 방법을 이용하여 4인치의 GZO(ZnO: 95 wt%, $Ga_2O_3$: 5 wt%) 타겟을 사용하여 공정압력은 5 mTorr, 파워는 150 W, 박막의 두께는 500 nm의 조건으로 박막을 증착하였다. PET 기판의 600초의 $O_2$ 플라즈마 처리 후 증착한 GZO 박막의 비저항이 $6.2\times10^{-3}\;{\Omega}$-cm이었고, PEN 기판의 120초의 $O_2$ 플라즈마 처리 후 증착한 GZO 박막의 비저항이 $1.1\;{\times}\;10^{-3}\;{\Omega}$-cm이었다. 또한 300 nm 이하의 자외선 영역에서는 뛰어난 광 차단 효과를 가지고 있었으며, 가시광선 영역 (400 nm ~ 700 nm)에서 증착 된 시편들이 80 % 광 투과율을 나타내었다.

  • PDF

Elastic Modulus Measurement of a Large Size Digital TV Display Unit (대형 Digital TV용 Display Unit의 강성 측정)

  • Kim Chang-Hoi;Moon Seong-In;Choi Jae-Boons;Kim Young-Jin;Lee Jeoung-Gwen;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.115-122
    • /
    • 2005
  • As the digital TV markets rapidly growing, many manufacturers introduce large size flat screen TV units. There are two different display types available to large size models which are plasma and TFT-LCD. Since both are constructed with thin large panels that are mostly fragile to even moderate mechanical shock inputs. Some large size panels are severely resonated by the acoustic sound generated TV which deteriorates video quality. Recognizing the potential problems of large displays, accurate measurement of the panels is to be an essential task for the reliable design. Measurement of mechanical properties of a thin large crystallized panel such as TFT-LCD display with traditional material testing equipments is challenging. Since TFT-LCDs are constructed with combination of brittle glass panels, polymer sheets, and liquid crystal, their properties are not only anisotropic but also usually non-linear. Accurate measurement of the properties often requires very expensive facilities. Especially when the size of the test sample is as large as 40-inch or wider, direct measurement cost is prohibitive. Even worse, machining of the large TFT-LCD to make a smaller size specimen that could be fit into a material tester is not possible because of liquid crystal leakage. A new method fer the measurement of elastic modulus of large TFT-LCD panel is presented in this article. The suggested method provides a simple, economic, and user-friendly way fer measuring the elastic modulus of large panels with considerable level of accuracy.

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime