• Title/Summary/Keyword: Plasma Injector

Search Result 19, Processing Time 0.01 seconds

An experimental study on the resistivity of injector plasma (인젝터 플라즈마 저항의 실험적 연구)

  • 한충규
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.19-26
    • /
    • 2002
  • A chamber enduring 3,000 bars and an electrical high voltage power system have been designed and installed for studying the characteristics of the plasma produced in electro-thermal chemical propulsion system. In order to test the structural characteristics, polyethylene injectors were used which have 4 or 6 mm inner diameter and several lengths from 15 to 70 mm. The capacitors were charged at the voltages of 5.2, 7.3 and 10.4 kV which correspond to 5.58, 11 and 22.3 kJ in charging energy. The observed resistivities of the plasma injector are close to those predicted by a theoretical model that describes the plasma resistivity according to high current density.

Application Research on LPG Injector type Plasma Reformer (LPG 인젝터형 플라즈마 개질기 적용연구)

  • Kim, Changup;Lee, Deahoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, plasma reformer technology with a LPG injector was investigated. It was developed with injection of LPG fuel and air in a region where the plasma discharge to make the thermal decomposition carbon fuel and to generate additional hydrogen. As a result of reforming test, when power is 70~100W supply, about HC 0.7% of the full reformed gas and hydrogen was generated from 1.2 to 1.5 %.

Power Supply and Control System for Injector of Ion Accelerator (이온 가속기의 인젝터 전원 장치 및 제어 시스템)

  • Im, Geun-Hui;Nikiforov, S.A.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.544-549
    • /
    • 1997
  • Injector of high voltage or linear ion accelerator is intended to generate, extract and form beam of certain species with required parameters at the entrance of accelerating structure or, for low energy case, directly in the processing chamber (end station). Injector is the main part defining the ion accelerator performance and reliability. Its power supply and control system (PSCS) features are conditioned by placing the injector equipment at high voltage potential and by complexity of the plasma-beam load. The injector's PSCS should provide: - Transmission of electric power onto high voltage (h/v) terminal; - Obtaining of required output characteristics for injector equipment operation; - Transmission of the operational data and start/stop signals from h/v terminal to control cabinet; - Rremote control of injector; - Withstanding the high voltage breakdowns and X-ray radiation; - Compatibility with other equipment. The paper is concerned with analysis of injectors' PSCS structure and description of the system developed for 50 keV, 20 mA heavy ion injector.

  • PDF

An Experimental Study on dte Performance of Plasma-DeNOx Catalyst widt Supplying Hydrocarbon Reductant (탄화수소 환원제 공급에 따른 플라즈마-DeNOx 촉매의 성능에 관한 실험적 연구)

  • Hur, Dong-Han;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • To improve the performance of plasma-DeNOx catalyst, a research on active system was performed experimentally. Two hydrocarbons, propane and diesel, were used as a reductant in this study. First, using propane, basic performances of plasma-DeNOx catalyst such as the effects of plasma and C/N ratio were measured at the various engine operating conditions. NOx conversion of catalyst was improved as plasma power or C/N ratio was increased. Next, diesel was injected in the exhaust gas flow as a reductant. The first test using diesel as a reductant is spray visualization in a high temperature flow and spray images were utilized for analysis of posterior test results. To evaluate the effect of an injection direction, it was compared with 6 installation methods of diesel injector due to THC concentrations at the inlet of plasma. From the results, injector was installed toward downstream direction below the pipe. Then, basic performances of plasma-DeNOx catalyst with various injection quantities were measured. As an injection quantity was increased, $NO_2$ conversion of plasma reactor was increased but NOx conversion of catalyst was nearly zero. This was because NOx conversion of catalyst had slowed as time goes by due to black particles which had been adhered to the catalyst.

150 kJ Compact Capacitive Pulsed Power System for an Electrothermal Chemical Gun

  • Lee, Byung-Ha;Kim, Jin-Sung;Kim, Seong-Ho;Lee, Young-Hyun;Yang, Kyung-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.971-976
    • /
    • 2012
  • A 150 kJ compact capacitive pulsed power system (CCPPS) capable of delivering electrical energy into an electrothermal chemical (ETC) gun on a vehicle has been studied. The CCPPS provides pulsed electrical energy into a capillary plasma injector which generates plasma of tens of thousands $^{\circ}K$ in temperature and has a nonlinear resistance depending on the current. The design requirements of the CCPPS are as follows: the maximum power of 250 MW, the pulse width of about 0.6 ms, the volume of no more than 0.5 cubic meter, the efficiency of energy transfer over 80 % and the repetition rate of 4~5 times per minute. The constructed CCPPS is composed of four 37.5 kJ capacitor bank modules in parallel to make a trapezoid pulse shape and to satisfy the design requirements. Each module is designed to achieve high reliability, safety, efficiency and energy density to endure severe operating conditions. The results of the performance test on the CCPPS using a 120 mm ETC gun are described.

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

Discharge Characteristics of Large-Area High-Power RF Ion Source for Neutral Beam Injector on Fusion Devices

  • Chang, Doo-Hee;Park, Min;Jeong, Seung Ho;Kim, Tae-Seong;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.1-241.1
    • /
    • 2014
  • The large-area high-power radio-frequency (RF) driven ion sources based on the negative hydrogen (deuterium) ion beam extraction are the major components of neutral beam injection (NBI) systems in future large-scale fusion devices such as an ITER and DEMO. Positive hydrogen (deuterium) RF ion sources were the major components of the second NBI system on ASDEX-U tokamak. A test large-area high-power RF ion source (LAHP-RaFIS) has been developed for steady-state operation at the Korea Atomic Energy Research Institute (KAERI) to extract the positive ions, which can be used for the NBI heating and current drive systems in the present fusion devices, and to extract the negative ions for negative ion-based plasma heating and for future fusion devices such as a Fusion Neutron Source and Korea-DEMO. The test RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of RF discharge. The characteristics and uniformities of the plasma parameter in the RF ion source were measured at the lowest area of the expansion bucket using two RF-compensated electrostatic probes along the direction of the short- and long-dimensions of the expansion region. The plasma parameters in the expansion region were characterized by the variation of loaded RF power (voltage) and filling gas pressure.

  • PDF

Development of Large-Area RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Chang, Doo-Hee;Jeong, Seung Ho;Kim, Tae-Seong;Park, Min;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.179.2-179.2
    • /
    • 2013
  • A large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER device. Negative hydrogen ion sources are major components of neutral beam injection (NBI) systems in future large-scale fusion experiments such as ITER and DEMO. The RF sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck-Institute for Plasma Physics), Garching, for the ASDEX-U and W7-AS neutral beam heating systems. Ion sources of the first NBI system (NBI-1) for the KSTAR tokamak have been developed successfully with a bucket plasma generator based on the filament arc discharge, which have contributed to achieve a good plasma performance such as 15 sec H-mode operation with an injection of 3.5 MW NB power. There is a development plan of RF ion source at the KAERI to extract the positive ions, which can be used for the second NBI system (NBI-2) of the KSTAR and to extract the negative ions for future fusion devices such as Fusion Neutron Source and Korea-DEMO. The development progresses of RF ion source at the KAERI are described in this presentation.

  • PDF

Investigation for construction of the control system for KSTAR NBI (KSTAR NBI 운전 제어 시스템 제작을 위한 고찰)

  • Chang, D.S.;Oh, B.H.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.295-296
    • /
    • 2006
  • Prototype NBI(Neurtal Beam Injector), which Is tested at KAERI(Kaeri Atomic Energy Research Instutide), is the facility for tokamak plasma Ignition of the advanced nuclear fusion KSTAR(Korea Superconducting Tokamak Advanced Research). New NBI facility, which is the part of KSTAR tokamak, will be constructed during next three years. This investigation is focused on the preliminary test to construct the control system for KSTAR NBI, before KSTAR NBI facility is constructed.

  • PDF

Development of a Plasma-Dump Reformer for Syngas Production (합성가스 생산을 위한 플라즈마-덤프 개질기 개발)

  • Lim, Mun Sup;Kim, Eun Hyuk;Chun, Young Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Limited sources of fossil fuels and also global climate changes caused by $CO_2$ emissions are currently discussed around the world. As a renewable, carbon neutral and widely available energy source, biogas is regarded as a promising alternative to fossil fuels. In this study, a plasma dump reformer was proposed to produce $H_2$-rich synthesis gas by a model biogas. The three-phase gliding arc plasma and dump combustor were combined. Screening studies were carried out with the parameter of a dump injector flow rate, water feeding flow rate, air ratio, biogas component ratio and input power. As the results, methane conversion rate, carbon dioxide conversion rate, hydrogen selectivity, carbon monoxide yield at the optimum conditions were achieved to 98%, 69%, 42%, 24.7%, respectively.