• Title/Summary/Keyword: Plasma Gas

Search Result 2,288, Processing Time 0.026 seconds

The Analysis of $SF_6/N_2$ Plasma Properties Under the Atmosphere Pressure ($SF_6/N_2$ 혼합기체의 대기압 플라즈마 특성 분석)

  • So, Soon-Youl;Lee, Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.516-520
    • /
    • 2009
  • Atmosphere Plasmas of Gas Discharge (APGD) have been used in plasma sources for material processing such as etching, deposition, surface modification, etc. This study is to investigate and understand the fundamental plasma discharge properties. Especially, $SF_6/N_2$ mixed gas would be used in power transformer, GIS (Gas insulated switchgear) and so on. In this paper, we developed a one dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). 38 kinds of $SF_6/N_2$ plasma particles which are an electron, two positive ions (${SF_5}^+$, ${N_2}^+$), five negative ions (${SF_6}^-$, ${SF_5}^-$, ${SF_4}^-$, ${F_2}^-$, ${F_1}^-$), thirty excitation and vibrational particles for $N_2$ were considered in this computation. The $N_2$ gases of 20%, 50%, 80% were mixed in $SF_6$ gas. As the amount of $N_2$ gas was increased, the properties of electro-negative plasma moved toward the electro-positive plasma.

Plasma treatments of indium tin oxide(ITO) anodes in argon/oxygen to improve the performance and morphological property of organic light-emitting diodes(OLED) ($O_2$ : Ar 혼합가스 플라즈마로 ITO표면 처리한 OLED의 동작특성 향상과 표면개질에 관한 연구)

  • Seo, Yu-Suk;Moon, Dae-Gyu;Jo, Nam-Ihn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.67-68
    • /
    • 2008
  • A simple bi-layer structure of organic light emitting diode (OLED) was used to study the characteristics of anode preparation. Indium tin oxide (ITO) anode surface treatment of OLEDs was performed to get the optimum condition for the ITO anode. The ITO surface was treated by $O_2$ or $O_2$ / Ar mixed gas plasma with different processing time. The electrical characteristics of OLED were improved by plasma treatment. The operating voltage of OLED with $O_2$ or $O_2$/Ar mixed gas plasma treated anodes decreases from 8.2 to 3.4 V and 3.2V, respectively. The $O_2$ /Ar mixed gas plasma treatment results in better electrical property.

  • PDF

Influence of Ambient Gas Composition on the Microstructure of Plasma Nitrocarburised SCM435 steel (플라즈마 질탄화처리된 SCM435강의 미세조직에 미치는 가스 조성의 영향)

  • Lee, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.427-430
    • /
    • 2002
  • Plasma nitrocarburizing treatment was performed for SCM 435 steel by using a plasma ion nitriding system. The effects of the variation of nitrogen and methan contents upon the hardened layer was investigated. Both the thickness of the compound layer and the amount of $\varepsilon$ phase in the compound layer increased with increasing nitrogen content. However, the thickness of the compound layer decreased due to unstable plasma for an atmosphere containing 90% $N_2$ gas content in the gas mixture. The amount of $\varepsilon$phase in the compound layer increased with increasing $CH_4$ gas content. For $CH_4$ gas content more than 2% in the gas mixture, the thickness of the compound layer decreased due to the formation of $\theta$ phase.

Improvements of the luminous efficiency of mercury-free fluorescent lamps via structural and complex gas mixture changes

  • Oh, Byung-Joo;Jung, Jae-Chul;Seo, In-Woo;Kim, Hyuk;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.809-812
    • /
    • 2008
  • Structural parameter variation effects (changing the coplanar gap under different discharge dimensions) and use of complex gas mixtures (He, Ne, Ar and Xe) in mercury-free fluorescent lamps are studied in this paper. Pure Neon gas is the best buffer gas for obtaining high luminous efficiency in mercury-free fluorescent lamps. It is shown that with a shorter coplanar gap (30mm), a high luminous efficiency can be obtained at low operating voltage, as well as high luminance uniformity and stable discharge with a Ne-Xe 20% gas mixture.

  • PDF

$UO_2$ Etching by Fluorine Containing Gas Plasma

  • Min, Jin-Young;Kim, Yong-Soo;Bae, Ki-Kwang;Yang, Myung-Seung;Lee, Jae-Sul;Park, Hyun-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.506-511
    • /
    • 1996
  • Research on the dry etching of UO$_2$ by using fluorine containing gas plasma is carried out for DUPIC (Direct Use of spent PWR fuel In CANDU) process which is taken into consideration for potential future fuel cycle in Korea. CF$_4$/O$_2$ gas mixture is chosen for the reactant gas and the etching rates of UO$_2$ by the gas plasma are investigated as functions of substrate temperature, plasma gas pressure, CF$_4$/O$_2$ ratio, and plasma power, It is tentatively found that the etching rate can reach 1000 monolayers/min. and the optimum CF$_4$/O$_2$ ratio is around 4:1.

  • PDF

Optimization of Plasma Process to Improve Plasma Gas Dissolution Rate using Three-neck Nozzle (3구 노즐을 이용한 플라즈마 가스 용존율 향상을 위한 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2021
  • The dissolution of ionized gas in dielectric barrier plasma, similar to the principle of ozone generation, is a major performance-affecting factor. In this study, the plasma gas dissolving performance of a gas mixing-circulation plasma process was evaluated using an experimental design methodology. The plasma reaction is a function of four parameters [electric current (X1), gas flow rate (X2), liquid flow rate (X3) and reaction time (X4)] modeled by the Box-Behnken design. RNO (N, N-Dimethyl-4-nitrosoaniline), an indictor of OH radical formation, was evaluated using a quadratic response surface model. The model prediction equation derived for RNO degradation was shown as a second-order polynomial. By pooling the terms with poor explanatory power as error terms and performing ANOVA, results showed high significance, with an adjusted R2 value of 0.9386; this indicate that the model adequately satisfies the polynomial fit. For the RNO degradation, the measured value and the predicted values by the model equation agreed relatively well. The optimum current, gas flow rate, liquid flow rate and reaction time were obtained for the highest desirability for RNO degradation at 0.21 A, 2.65 L/min, 0.75 L/min and 6.5 min, respectively.

The Study on Emission Spectrum Characteristics of Atmosphere Pressure Plasma (상압 플라즈마의 광 방출 스펙트럼 특성조사에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • In this study, we aimed to determine the optical properties of the plasma used for the dry cleaning method. The optical properties of the atmospheric pressure plasma device were measured through the degree of ionization of hydrogen or nitrogen gas by ionized atmospheric gas. The degree of ionization of hydrogen or nitrogen is closely associated with surface modification. We observed through our experiments that argon gas, an atmospheric gas, caused an increase in the ionization of nitrogen gas, which has similar ionization energy. This type of increase in nitrogen gas ions is believed to affect surface modification. The results of our study show that the pressure of argon gas and the partial pressure of argon and nitrogen gases lead to different results. This important result shows that argon ions can affect the ionization of nitrogen gas.

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (III) -The Effect on Plasma Emission Signals by Shield Gas- (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (III) - 보호가스가 플라즈마 방사 신호에 미치는 영향 -)

  • Lee, Chang-Je;Kim, Jong-Do;Kim, Yu-Chan
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.60-65
    • /
    • 2013
  • Ar, $N_2$, and He are the conventional kind of shield gas that are used for laser welding. Many researches on the impact of laser welding shield gas have been done, and it is on going until now. However, there are few studies that analyze the changes and differences of the plasma emission signal. Therefore, in this study, we evaluated the change in the penetration characteristics according to the type of shield gas during fiber laser welding impacts to the plasma signal. As a result, if was checked that the difference in molecular weight of Ar, $N_2$, and He affects to the amount of spatter, and also found that the measured plasma radiation signal changes similar to the order of the molecular weight of the gases. Especially, clear change on the signal intensity per each shield gas was measured through RMS, and found that the shield gas was nothing to do with the FFT analyzed result.

Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation (고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.

Simulation of Inductively Coupled $Ar/O_2$ Plasma; Effects of Operating Conditions on Plasma Properties and Uniformity of Atomic Oxygen

  • Park, Seung-Kyu;Kim, Jin-Bae;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.59-63
    • /
    • 2009
  • This paper presents two dimensional simulation results of an inductively coupled $Ar/O_2$ plasma reactor. The effects of operating conditions on the plasma properties and the uniformity of atomic oxygen near the wafer were systematically investigated. The plasma density had the linear dependence on the chamber pressure, the flow rate of the feed gas and the power deposited into the plasma. On the other hand, the electron temperature decreased almost linearly with the chamber pressure and the flow rate of the feed gas. The power deposited into the plasma nearly unaffected the electron temperature. The simulation results showed that the uniformity of atomic oxygen near the wafer could be improved by lowering the chamber pressure and/or the flow rate of the feed gas. However, the power deposited into the plasma had an adverse effect on the uniformity.

  • PDF