• 제목/요약/키워드: Plasma Bonding

검색결과 249건 처리시간 0.022초

플라즈마 처리가 목분/폴리프로필렌 복합재의 계면에 미치는 영향 연구 (Study of Plasma Polymerization on Wood Powder/PP Composites Interface)

  • 하종록;김병선;이진우
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.170-174
    • /
    • 2013
  • 상온 상압 플라즈마 표면처리된 목분을 폴리프로필렌(polypropylene)과 혼합하였을 때 두 재료의 계면에 미치는 영향을 연구하였다. 목분과 폴리프로필렌을 압출기를 통해 기계적으로 혼합한 후 사출기를 이용하여 목분함유량 50 wt% 목분/폴리프로필렌(Wood Plastic Composite, WPC) 복합재를 제조하였다. 플라즈마 표면처리 공정에 가장 적합한 Monomer(모노머)를 찾기 위해 Oxygen, Benzene, CH-4, Acrylic-acid, Hexafluoroethane, Trifluorotolune, Hexamethyl-disiloxane(HMDSO) 등 7가지의 모노머에 대해 Contact angle(접촉각)을 측정하여 표면에너지를 계산하였다. 그 결과 HMDSO가 가장 높은 표면에너지를 나타내어 플라즈마 공정의 모노머로 적용하였다. 소수성인 폴리프로필렌과 친수성인 목분을 플라즈마 표면처리를 통하여 목분의 표면을 개질하였고 두 재료의 계면 결합력을 향상시킬 수 있었다. 기계적 물성평가 결과는 인장강도의 경우 최대 7.59%, 굴곡강도의 경우 최대 12.43%가 증가하였다. SEM(Scanning Electron Microscope)을 이용하여 파단면을 관찰하였고 플라즈마 표면처리의 효과를 확인하였다.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

${SF_6}/{Cl_2}$ 혼합비에 따른 실리콘 식각 특성 고찰 (A Study on the Silicon Etching Characteristics in ECR using ${SF_6}/{Cl_2}$ Gas Mixtures)

  • 이상균;강승열;권광호;이진호;조경익;이형종
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.114-119
    • /
    • 2000
  • Etch characteristics of SF6/CI2 electron cyclotron resonance (ECR) plasmas have been investigated. Surface reaction of gas plasma with polysilicon was also analysed using X-ray photoelectron spectroscopy (XPS). At the same time, the relationship between surface reaction and the etched profile of polysilicon was examined using XPS. The etch rate of polysilicon and oxide increases with increasing flow rate of SF6 in the SF6/CI2 gas mixture, and tis selectivity also increase also increase. It was also found that as increasing flow rate of SF6 in the SF6/CI2 gas mixture, the atomic% of chlorine detected at surface region decrease, but F and S contents increase. At the same time, when the mixing ratio of SF6 gas increases, the anisotropy of etched polysilicon is sharply decreased in the 0%~10% range of the SF6 mixing ratio, but is rarely varied in the range over 10%, in spite of the large variations in flow rates. It can be explained that the bonding of S-Si due to SiSx(x$\leq$2) compound formed on the etched surface suppress the formation of Si-Cl and 'or Si-F bonding in the silicon etching.

  • PDF

BTMSM/O2 유량변화에 따른 SiOCH 박막의 저유전 특성 (Properties of SiOCH Thin Film Lour Dielectric by BTMSM/O2 Flow Rates)

  • 박인철;김홍배
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.132-136
    • /
    • 2009
  • SiOC thin film of hybrid-type that is the limelight as low dielectric material of next generation were deposited by plasma enhanced chemical vapor deposition (PECVD) method with bistrimethylsilylmethane (BTMSM) precursor increased by 2 sccms from 24 sccms to 32 sccm. Manufactured samples are analyzed components by measuring FT/IR absorption lines. It is a tendency that seems to be growing of Si-O-Si(C) bonding group and narrowing of Si-O-$CH_3$ bonding group relative to the increasing flow-rate BTMSM. The chemical shift in the XPS analysis was shown in the specimens between the BTMSM=26 sccm and BTMSM = 28 sccm. The binding energy of Si 2p, C 1s and O 1s electron orbit spectra was the low-est at the specimen of the BTMSM=26 sccm. From the results of electrical Properties using the 1 MHz C - V measurements, the dielectric constant was 2.32 at the specimen with the BTMSM = 26 sccm.

Co(EtCp)2프리커서를 사용한 Co 박막의 선택적 원자층 증착 (Selective Atomic Layer Deposition of Co Thin Films Using Co(EtCp)2 Precursor)

  • 김수정;김용태;허재영
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.163-169
    • /
    • 2024
  • As the limitations of Moore's Law become evident, there has been growing interest in advanced packaging technologies. Among various 3D packaging techniques, Cu-SiO2 hybrid bonding has gained attention in heterogeneous devices. However, certain issues, such as its high-temperature processing conditions and copper oxidation, can affect electrical properties and mechanical reliability. Therefore, we studied depositing only a heterometal on top of the Cu in Cu-SiO2 composite substrates to prevent copper surface oxidation and to lower bonding process temperature. The heterometal needs to be deposited as an ultra-thin layer of less than 10 nm, for copper diffusion. We established the process conditions for depositing a Co film using a Co(EtCp)2 precursor and utilizing plasma-enhanced atomic layer deposition (PEALD), which allows for precise atomic level thickness control. In addition, we attempted to use a growth inhibitor by growing a self-assembled monolayer (SAM) material, octadecyltrichlorosilane (ODTS), on a SiO2 substrate to selectively suppress the growth of Co film. We compared the growth behavior of the Co film under various PEALD process conditions and examined their selectivity based on the ODTS growth time.

$BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성 (Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma)

  • 김동표;우종창;엄두승;양설;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF

프로필렌의 플라즈마 처리로 개질된 목분이 복합재료의 기계적 특성에 미치는 영향 (The Effect of Surface-Modification of Wood Powders by Plasma Treatment of Propylene on the Mechanical Properties of Wood Powder/PP Composites)

  • 조동련;하종록;김병선;이진우
    • Composites Research
    • /
    • 제30권2호
    • /
    • pp.145-148
    • /
    • 2017
  • 프로필렌의 플라즈마 처리로 목분을 표면 개질하여 복합재 기지인 PP와 상용성을 가지게 하였다. 프로필렌을 플라즈마로 처리하여 증착된 소수성 박막 필름의 화학적 구조는 PP와 흡사하였다. 목분과 PP는 이축 압출기에 의해 펠렛으로 만들어 졌고 50 wt% wood powder/PP 복합재료는 사출 성형기에 의해 성형되었다. 인장강도와 굴곡 강도는 최고 7.59% and 12.43%까지 향상되었으며 파단면에 대한 SEM 관찰로 플라즈마 중합이 계면 접착력과 기계적 특성을 향상시킨 것을 볼 수 있었다.

The biocompatibility and mechanical properties of plasma sprayed zirconia coated abutment

  • Huang, Zhengfei;Wang, Zhifeng;Yin, Kaifeng;Li, Chuanhua;Guo, Meihua;Lan, Jing
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권3호
    • /
    • pp.157-166
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the clinical performance and reliability of plasma sprayed nanostructured zirconia (NSZ) coating. MATERIALS AND METHODS. This study consisted of three areas of analysis: (1) Mechanical property: surface roughness of NSZ coating and bond strength between NSZ coating and titanium specimens were measured, and the microstructure of bonding interface was also observed by scanning election microscope (SEM). (2) Biocompatibility: hemolysis tests, cell proliferation tests, and rat subcutaneous implant test were conducted to evaluate the biocompatibility of NSZ coating. (3) Mechanical compatibility: fracture and artificial aging tests were performed to measure the mechanical compatibility of NSZ-coated titanium abutments. RESULTS. In the mechanical study, 400 ㎛ thick NSZ coatings had the highest bond strength (71.22 ± 1.02 MPa), and a compact transition layer could be observed. In addition, NSZ coating showed excellent biocompatibility in both hemolysis tests and cell proliferation tests. In subcutaneous implant test, NSZ-coated plates showed similar inflammation elimination and fibrous tissue formation processes with that of titanium specimens. Regarding fatigue tests, all NSZ-coated abutments survived in the five-year fatigue test and showed sufficient fracture strength (407.65-663.7 N) for incisor teeth. CONCLUSION. In this study, the plasmasprayed NSZ-coated titanium abutments presented sufficient fracture strength and biocompatibility, and it was demonstrated that plasma spray was a reliable method to prepare high-quality zirconia coating.

알루미나 첨가에 의한 질화규소의 방전 플라즈마 소결 거동과 상전이 특성 및 기게적 특성에 미치는 영향 (The Effect of Al2O3 addition on the Characteristics of Sintering Behavior, Phase Transformation and Mechanical Properties of Spark Plasma Sintered Si3N4 Ceramics)

  • 채재홍;김대근;김경훈;박주석;안종필;심광보
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.94-98
    • /
    • 2008
  • Silicon nitride($Si_3N_4)$ is one of the most widely used structural ceramic materials. However silicon nitride is difficult to sinter because of its strong covalent bonding characteristics. In this study, $Si_3N_4$ ceramics were fabricated by spark plasma sintering process with $Y_2O_3$ and $Al_2O_3$ addition to improve the sinterability and the mechanical properties and their phase transformation behavior, microstructure and mechanical properties were evaluated. Fully densified $Si_3N_4$ ceramics could be obtained by spark plasma sintering process at a lower temperature than conventional sintering method. The formation of network microstructure was affected by the addition of $Al_2O_3$ because it could accelerate a to ${\alpha}$ to ${\beta}$ phase transformation of $Si_3N_4$. As a result, the mechanical properties depended on amounts of $Al_2O_3$ addition. The hardness value increased with increasing ${\alpha}$-phase fraction, but fracture toughness value increase with increasing ${\beta}$-phase fraction.