• Title/Summary/Keyword: Planting Structure

Search Result 177, Processing Time 0.021 seconds

Calculation of Crop Loads for Structural Design of Greenhouse (온실의 구조설계용 작물하중 산정)

  • Na, Wook-Ho;Lee, Jong-Won;Rasheed, Adnan;Kwak, Cheul-Soon;Lee, Si-Young;Yoon, Yong-Cheol;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.301-309
    • /
    • 2017
  • This study was conducted to provide basic data needed to calculate the crop loads for the greenhouse design. Four countries' crop loads for greenhouse structures were compared and the crop loads were measured directly and analyzed for various greenhouse crops, including tomato, strawberry, cucumber, and eggplant. According to the analysis results of four country's standards for the design crop loads, it was judged that the new design crop loads suit for greenhouse crops in our country should be suggested because our standards just used the design crop loads of other countries. The maximum crop loads per plant of tomato, cucumber, eggplant, and strawberry were 3.9, 0.75, 1.9 and $2.1kgf{\cdot}plant^{-1}$, respectively. The crop load per unit area of tomato was $8.5kgf{\cdot}m^{-2}$, which was much greater than the cucumber and eggplant's crop load of 2.1 and $2.4kgf{\cdot}m^{-2}$ respectively. The crop loads of tomato and cucumber, suggested by the greenhouse structure design standard of Korea, is $15kgf{\cdot}m^{-2}$, which is far greater than the values suggested by this research. It was judged that this was because our standard just used the Dutch standard, our crop load standard should be reviewed considering this difference. The crop load of strawberry, including the growing bed, was $21.0kgf{\cdot}m^{-2}$, which was much greater than the crop load in the Dutch standard.

A Study on the Location and Spatial Composition of Pihyang-jeong Zone (피향정(披香亭) 일원의 입지 및 공간구성에 관한 연구)

  • Lee, Hyun-Woo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.85-97
    • /
    • 2010
  • This research studied the location and the spatial composition of Pihyang-jeong zone. Pihyang-jeong is regarded as one of the five great pavilions in Chollabuk-do. Located in Taein-myeon of Jeongeup-si, Pihyang-jeong is also called as 'the number one pavilion in Honam area'. 1. There is no record regarding the first construction of Pihyang-jeong. There is only transmitting by word of mouth that the scholar Choi Chi-won had an excursion to here and composed some poetry during the age of King Heon-gang of Shilla dynasty. However, there are records that Lee Ji-gweng had expanded the humble structure in 1618, Park Sung-go repaired it in 1664 and Yoo Geun repaired it again in 1715. 2. The location of Pihyang-jeong is 'high in north and low in south' and typical 'mountain in rear and water in front'. It has Seong-hwang Mountain(189m) in the north, Hang-ga Mountain(106m) in the south, Tae Mountain(33m) in the south and an open field in the northwest. 3. The spatial composition around Pihyang-jeong is as following. Pihyang-jeong faces 'Hayeonji'(the lower side lotus pond) in the south-south-west direction. 4. The buildings around Pihyang-jeong are; Pihyang-jeong, which was the pavilion of the government official not directly in charge of government office, Hambyeok-lu in the Hayeonji and the facility for the caretaker. Pihyang-jeong is a rectangular building with double eaves and hipped-and-gabled roof. It has five rooms in the front and four rooms in the side. Hambyeok-lu had been first built in 1918 as two-storey wooden pavilion with dancheong, traditional multicolored paintwork on wooden buildings. Then it was modified into rectangular single-storey pavilion with hipped-and-gabled roof and five rooms in 1971. In 2010, it was rebuilt as a hexagonal pavilion; therefore, the present shape is completely different one from the original shape. 5. The scenic features around Pihyang-jeong are as following. There are 21 stone monuments in Pihyang-jeong zone. The fence surrounding Pihyang-jeong is a traditional Korean style crude stone fence. There are three gates in three-gates-style, each gate made with two posts and one 'matbae'(gabled) roof. Also, a stepping stone for mounting/dismounting was found in the east of Pihyang-jeong outer perimeter. 6. The water scenic feature around Pihyang-jeong is a representative case of drawing in the water from the natural pond nearby government office and building a pavilion around the water. 7. The planting around Pihyang-jeong is as following. There are Zelkova trees in the boundary perimeter. In the southern small park, there are Zelkova trees, Crape-myrtie trees, Bushy young pine trees, Pine trees, Satuki, Purple azalea and Grass field. Around Hambyeok-lu in the Ha-yeonji, Elm trees, Zelkova trees and Pine trees are growing in good condition.

Changes in Temperature and Light Distribution in the Rice Crop Canopy at the Different Growth Stages (수도군락내(水稻群落內) 온도(溫度) 및 광분포(光分布)의 시기별(時期別) 변화(變化))

  • Lee, Jeong-Taek;Jung, Yeong-Sang;Ryu, In-Soo;Kim, Byung-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 1984
  • To find out the differences in micro-meteorological changes in the rice plant canopy at the different growing stages, Seokwang-byo, a high yielding variety, was cultivated with three planting densities of 50, 80 and 110 hills per $3.3m^2$ in 1982, and Seokwangbyo and Chucheong-byo, a local variety, were planted with a density of 80 hills per $3.3m^2$. Air temperature in plant canopies, water and soil temperatures were continuously monitored throughout the growing period. The relationship between solar radiation interception and leaf area indices at different height in the canopy also was studied. The results were as follows: 1. Air temperature in the densely planted canopy was 1 to $1.5^{\circ}C$ higher than that in the sparsely planted one at the early growing stage, but was inverted after 60 days of transplanting. The vertical distribution of temperature in the canopies showed that air temperature at 10 cm height from the ground was higher than that at 30 cm height. The temperature inversion occurred showing lower temperature at the 10 cm height than at the 30 cm height. 2. The highest temperature of a day in the canopy occurred at 14:00 to 15:00 Korean Standard Time same as that of air temperature, but approached to the solar noon time as the plants grew thick. 3. The air temperature in the canopy became higher than water temperature when the leaf area indices were 4.6 for Chucheongbyo and 5.2 for Seokwangbyo, and the light penetration ratios were 40 percents. 4. Light extinction coefficients of the 50 to 70 cm layer of the canopies were 0.3 to 0.5 but decreased at the lower layers. 5. Albedo of the canopies was 0.4 in the morning and evening while that was about 0.25 at noon. The difference in albedo between Seokwangbyo and Chucheongbyo could be recognized with the difference in leaf structure.

  • PDF

A Resurrection of Gongampungbyeog Cliff and Geoyeonjeong Byeolseowonlim in Cheongdo (청도 공암풍벽과 거연정(Geoyeonjeong) 별서원림의 재조명)

  • Kim, Jeong-Moon;Jeong, Poo-Rum;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.11-24
    • /
    • 2020
  • The purpose of this study was to re-examine the neglected and forgotten Cheongdo Geoyeonjeong, to correct the wrong contents, examine the changes and conditions of the garden, and to establish basic data on the components of the forest in the future. In addition, it was extended to the Gongampungbyeog Cliff, the influence area of the Geoyeonjeongwonlim, and the results of the study were as follows; First, Based on the recitation of "Seonyu pungryu(仙遊風流)" in the "Cheongsuheon-yugo(聽水軒遺稿),", Dongchangcheon Stream and Gongampungbyeog(孔巖楓壁) were influenced by the outer gardens of the Georyeonjeongwonrim. Second, Small pavilion was built and arranged under the rock of Byeongam(Byeongpungbawi) in the management history of Geoyeonjeong Pavilion. The records show that Cheongsuheon used the Geoyeonjeong Pavilion as the original forest and even recognized Oewon, which is a scenic influence, as the Gongampungbyeog Cliff. Third, Many of the poems related to Gongam were recognized as Seunggyeong, which represents the Unmun area, and the eight scenery of Cheongdo and Unmungugok were established here as proof that Gongampungbyeog Cliff was very faithful to the traditional Seunggyeong aspect of Gongampungbyeog Cliff, and the crystalline structure of the location was implied as an external source of Geoyeonjeongwonlim. Fourth, The lower part of Dongchangcheon Stream, which stretches from Geoyeonjeongwonrim to Gongam, is filled with attractions consisting of cancerous areas such as Punghodae, Moseongam, Buangdae, Gokcheondae, Saganjeong, Hakgadae, and Hyeongjeam, which provide a clearer picture of the space and landscape of the Geyeonjeongwonrim Outer Garden. Fifth, The expression "dragging water, spilling it into the courtyard, and sending it back to the downtown of the field" of the Cheongsuheon-yugo suggests that the site of Geoyeonjeong Pavilion was originally a prevention. It is also inferred that Cheng Shu-heon also wanted to respect runners and pursue natural views like runners. Sixth, The record of planting a description of spring water and willow trees in "Geoyeonjeong Manyeong(居然亭晩影)」" and "Sanggukseol(霜菊說)」" suggests that the chrysanthemum was planted and planted, and that the chrysanthemum was used to describe the Osanggojeol(傲霜孤節), which means that he would not yield and keep his incision alone despite severe frost. Seventh, It is believed that the writing was written by Cheongsuheon in 1844 during the period of the creation of the Wonrim. The rock letters on the floor of Geoyeonjeong suggest the names of the receiving and the winning prizes. Most of the passages are based on nuclear power plants, including Muidogyo of the Zhuzi, and most of them incorporate the virtues of the Gunja and the natural views of the Eunja. In addition, the rock writing 'Gyeong(敬)' or 'Uidang(義堂)' is a substitute for special worship objects or introspection, adding to the significance and scenic properties of the Georyeon Garden Forest.

A Study on the Original Landscape for the Restoration and Maintenance of Buyongjeong and Juhamnu Areas in Changdeokgung Palace (창덕궁 부용정과 주합루 권역의 복원정비를 위한 원형 경관 고찰)

  • Oh, Jun-Young;Yang, Ki-Cheol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.24-37
    • /
    • 2021
  • This study was conducted to newly examine the original landscape of Buyongjeong(芙蓉亭) and Juhamnu(宙合樓) areas in Changdeokgung Palace(昌德宮), focusing on the modern period including the Korean Empire, and to derive useful research results for restoration and maintenance in the future. The study results can be summarized as follows. First, the artificial island in Buyongji(芙蓉池) was originally made up of a straight layer using well-trimmed processed stone. However, during the maintenance work in the 1960s and 1970s, the artificial island in Buyongji was transformed into a mixture of natural and processed stones. The handrail installed on the upper part of the artificial island in Buyongji is a unique facility that is hard to find similar cases. The handrail existed even during the Korean Empire, but was completely destroyed during the Japanese colonial period. Second, Chwibyeong(翠屛), which is currently located on the left and right of Eosumun(魚水門), is the result of a reproduction based on Northern bamboo in 2008. Although there is a view that sees the plant material of Eosumun Chwibyeong as Rigid-branch yew, the specific species is still vague. Looking at the related data and circumstances from various angles, at least in the modern era, it is highly probable that the Eosumun Chwibyeong was made of Chinese juniper like Donggwanwangmyo Shrine(東關王廟) and Guncheongung(乾淸宮) in Gyeongbokgung Palace(景福宮). Third, the backyard of Juhamnu was a space with no dense trees on top of a stone staircase-shaped structure. The stone stairway in the backyard of Juhamnu was maintained in a relatively open form, and it also functioned as a space to pass through the surrounding buildings. However, as large-scale planting work was carried out in the late 1980s, the backyard of Juhamnu was maintained in the same shape as a Terraced Flower Bed, and it was transformed into a closed space where many flowering plants were planted. Fourth, Yeonghwadang Namhaenggak(暎花堂 南行閣), which had a library function like Gyujanggak(奎章閣) and Gaeyuwa(皆有窩), was destroyed in the late 1900s and was difficult to understand in its original form. Based on modern photographs and sketch materials, this study confirmed the arrangement axis of Yeonghwadang Namhaenggak, and confirmed the shape and design features of the building. In addition, an estimated restoration map referring to 「Donggwoldo(東闕圖)」 and 「Donggwoldohyung(東闕圓形)」 was presented for the construction of basic data.

Remodeling and Damage of the Garden According to the Park Project in Deoksugung Palace During the Japanese Colonial Period (일제강점기 덕수궁(德壽宮) 공원화에 따른 정원의 개조와 훼손)

  • OH Junyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.234-252
    • /
    • 2023
  • This study looked at the modification of major gardens while making Deoksugung Palace (德壽宮) a park in the Japanese colonial era. This is because landscaping work was carried out in various places from 1932 to 1933 to open Deoksugung Palace, which used to be an imperial palace, as a public recreation space. In particular, major gardens such as the front yard of Seokjojeon Hall (石造殿), the back yard of Hamnyeongjeon Hall (咸寧殿), and the back yard of Jeukjodang Hall (卽阼堂) were greatly transformed into different shapes from the original. During the first phase of construction in 1932, a water tank was installed in Seokjojeon Hall Garden, creating the first water space. This water tank was originally a structure installed in the front yard of Injeongjeon Hall (仁政殿) of Changdeokgung Palace (昌德宮). Around 1909, a water tank installed in the front yard of Injeongjeon Hall was relocated to Seokjojeon Garden in the process of turning Deoksugung Palace into a park. The water tank moved from the front yard of Injeongjeon Hall was a factor that transformed the central area of Seokjojeon Garden into a water space, and a fountain installed to replace the water tank remains to this day. The backyard of Hamnyeongjeon Hall was also renovated into a new shape during the first phase of construction. Originally, there was a terraced flowerbed called Hwagye (花階) in the backyard of Hamyujae Hall (咸有齋) and Hamnyeongjeon Hall, and it was restored from the construction that took place after the Great Fire of Deoksugung Palace. In the process of turning Deoksugung Palace into a park, a three-stage stonework was built in the front yard of Jeonggwanheon Pavilion (靜觀軒) which renovated the Hwagye in the backyard of Hamyujae Hall and Hamnyeongjeon Halll. The stonework built at that time was used as a peony garden to provide visitors with attractions after the opening of Deoksugung Palace, and it remains today with the name Jeonggwanheon's Hwagye. The backyard of the Jeukjodang Hall area is a case of damage in the second phase of construction in 1933. Like the backyard of Hamnyeongjeon Hall, the backyard of Jeukjodang Hall, where the Hwagye was originally built, was converted into a Japanese-style garden in the process of turning Deoksugung Palace into a park. The site where the Hwagye was demolished was decorated with a Japanese-style garden centered on mounding, small roads, and landscaping stones, as well as topographic control and planting work. Although there have been minor changes since liberation, the backyard of the Jeukjodang Hall area is still based on a Japanese-style garden created by turning Deoksugung Palace into a park.

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF