• Title/Summary/Keyword: Plant-scale

Search Result 1,596, Processing Time 0.029 seconds

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

Changing Wheat Quality with the Modification of Storage Protein Structure

  • Tamas, Laszlo;Bekes, Ferenc;Morrell, Matthew K.;Appels, Rudi
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • The visco-elastic properties of gluten are major determinants of the processing properties of doughs. These visco-elastic properties are strongly influenced by the ratio of monomeric and polymeric proteins and the size distribution of the polymeric proteins, which make up the gluten fraction of the dough. Recent studies have revealed that other features, such as the number of the cysteine residues of the HMW-GS, also play an important role in determining the functional characteristics. To modify the processing properties at molecular level, the relationship between the structure of molecules and dough properties has to be understood. In order to explore the relationships between individual proteins and dough properties, we have developed procedures for incorporating bacterially expressed proteins into doughs, and measuring their functional properties in small-scale equipment. A major problem in investigating the structure/function relationships of individual seed storage proteins is to obtain sufficient amounts of pure polypeptides from the complex families of proteins expressed in the endosperm. Therefore, we have established a simplified model system in which we produce specific protein genes through bacterial expression and test their functional properties in smallscale apparatus after incorporation into base flour. An S poor protein gene has been chosen as a template gene. This template gene has been modified using standard recombinant DNA techniques in order to test the effects of varying the number and position of cysteine residues, and the size of the protein. Doughs have been mixed in small scale apparatus and characterized with respect to their polymeric composition and their functional properties, including dough mixing, extensibility and small scale bating. We conclude that dough characteristics can be manipulated in a predictable manner by altering the cysteine residues and the size of high molecular weight glutenins.

  • PDF

Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2) (황색산화철을 포함하는 혼합형 고체추진제의 특성에 관한 연구 (2))

  • Park, Sungjun;Kim, Kyungmin;Park, Jungho;Rho, Taeho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 2020
  • The mechanical properties of the propellant with yellow iron oxide were slightly increased compared to the propellant with red iron oxide. The propellant with yellow iron oxide used two types of AP. As the ratio of small particles of AP increased, the burning rate increased. The propellant may be applied to the propellant under operating conditions of 17.5 mm/sec or less having a pressure index of 0.5. The burning rate downs in the mixer scale-up. The stress at maximum load of propellant decreased and the strain at maximum load increased in the mixer scale-up. The yellow iron oxide did not affect the adhesive force between the insulation/liner/propellant.

Utilization of UAV Remote Sensing in Small-scale Field Experiment : Case Study in Evaluation of Plat-based LAI for Sweetcorn Production

  • Hyunjin Jung;Rongling Ye;Yang Yi;Naoyuki Hashimoto;Shuhei Yamamoto;Koki Homma
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.75-75
    • /
    • 2022
  • Traditional agriculture mostly focused on activity in the field, but current agriculture faces problems such as reduction of agricultural inputs, labor shortage and so on. Accordingly, traditional agricultural experiments generally considered the simple treatment effects, but current agricultural experiments need to consider the several and complicate treatment effects. To analyze such several and complicate treatment effects, data collection has the first priority. Remote sensing is a quite effective tool to collect information in agriculture, and recent easier availability of UAVs (Unmanned Aerial Vehicles) enhances the effectiveness. LAI (Leaf Area Index) is one of the most important information for evaluating the condition of crop growth. In this study, we utilized UAV with multispectral camera to evaluate plant-based LAI of sweetcorn in a small-scale field experiment and discussed the feasibility of a new experimental design to analyze the several and complicate treatment effects. The plant-based SR measured by UAV showed the highest correlation coefficient with LAI measured by a canopy analyzer in 2018 and 2019. Application of linear mix model showed that plant-based SR data had higher detection power due to its huge number of data although SR was inferior to evaluate LAI than the canopy analyzer. The distribution of plant-based data also statistically revealed the border effect in treatment plots in the traditional experimental design. These results suggest that remote sensing with UAVs has the advantage even in a small-scale experimental plot and has a possibility to provide a new experimental design if combined with various analytical applications such as plant size, shape, and color.

  • PDF

Hydrologic Performance Characteristics of Small Scale Hydro Power Site (소수력발전입지의 수문학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.135-142
    • /
    • 2007
  • The model to predict flow duration characteristics and performance for small scale hydro power(SSHP) plants is studied to analyze the effects of rainfall condition. One existing SSHP plant was selected and performance characteristics was analyzed by using the developed model. The predicted results from the model developed show that the data were in good agreement with operational results of existing SSHP plant. The results show that both the scale parameter and the shape parameter have large effects on the performance of SSHP sites. And also it was found that the model developed in this study can be a useful tool to predict the performance of SSHP sites.

Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태변화에 의한 소수력발전소 수문학적 성능의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

A study on the supervisory control of digital instrumentation and control system for power plant (발전소 제어용 디지탈 계장제어 시스템의 관리제어에 관한 연구)

  • 권만준;이재혁;김병국;변증남;배병환;박익수;허성광
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.204-208
    • /
    • 1990
  • The digital instrumentation and control system for the large scale system like the power plant must have the form of the heirachical structure. Because most large scale system have many control and process signals and it is distributed in the vade region, it is necessary to partition them into several subsystems. Therefore, the role of SCS(Supervisory Control System) having the functions of controlling and monitoring for the status of subsystems is very important. In this paper, new SCS for the effective control of the large scale system is proposed.

  • PDF

Experience in Combustion of Various Dewatered Sludges at a Commercial-Scale Fluidized Bed Incinerator

  • Gu, Jae-Hoi;Yoo, Byung-Sang;Yeo, Woon-Ha;Seo, Yong-Chil;Lee, Jea-Keun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.91-96
    • /
    • 2000
  • A commercial-scale Fluidized Bed Incinerator(FBI) to treat dewatered sludges has been developed by Jindo Corporation, Korea, as one of the governmental R&D project during 1990 to 1997. The FBI plant was constructed at Kunsan city and fully in operation after finishing the successful test-burn period since June 1998. The company now has a capability of the design, construction and operation of commercial FBI plants. This paper introduces the experiences of design and operation of Kunsan FBI plant, which has the capacity of 60 ton/day and incinerates various sludges from waste water treatment facilities and liquid waste such as waste oil or waste solvent.

  • PDF