• Title/Summary/Keyword: Plant virus disease

Search Result 508, Processing Time 0.022 seconds

A New Short Growth-Duration Rice Cultivar, "Keumo 3" (소득작물 전후작용 단기성 벼 품종 "금오3호")

  • Kang, Jong-Rae;Lee, Jong-Hee;Kwack, Do-Yeon;Lee, Jeom-Sik;Park, No-Bong;Ha, Woon-Gu;Park, Dong-Soo;Yeo, Un-Sang;Lim, Sang-Jong;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.292-298
    • /
    • 2009
  • A new rice cultivar "Keumo 3" was developed for adopting under double cropping system with after or before cash crop cultivation. It was selected from the cross-combination between YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102. The parent, YR17202 $F_2$ individual plant, was used for tolerance to lodging, it derived from a cross between Nonganbyeo/Shinkeumobyeo. Nonganbyeo is well known to lodging tolerance cultivar, as well as biotic stress, because it was developed by crossing with Tongil type. And the YR15727-B-B-B-102 line used as another parent with short growth duration, likewise highly resistance to rice blast disease. The pedigree derived from the cross-combination YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102 were generated to $F_7$, and a best line among them named as Milyang 201. After a series of yield trials, including local adaptability test conducted throughout the peninsular of Korea, Milyang 201 was registered with the name of "Keumo 3" in 2005. The cultivar belongs to a early maturing group and heads 4 days earlier than Keumobyeo, a standard cultivar. It has short culm, and less spikelet number per panicle than Keumobyeo. However, its milled rice yield grown under extremely late transplanting time, 10. July, over the 3 local sites for 2003-2005 years, averaged 4,48 MT/ha, which is 6% higher than the standard, Keumobyeo. "Keumo 3" has showed a durable resistance to leaf blast disease during fourteen blast nurseries screening covered from south to north in Korea for 2003-2007 years. And it was confirmed harbours pi-zt, a durable blast resistance gene. Moreover it was incompatible with 19 blast isolates under artificial inoculation, except one isolate, K1101. Additionally, "Keumo 3" exhibits resistance to $K_1$, $K_2$ and $K_3$ of bacterial blight pathogen, as well as strip virus disease resistance, and moderate resistance to dwarf virus disease. Consequently, the new rice cultivar "Keumo 3" would be well adopted where a bio stress makes a big problem annually.

Identification of Potential DREB2C Targets in Arabidopsis thaliana Plants Overexpressing DREB2C Using Proteomic Analysis

  • Lee, Kyunghee;Han, Ki Soo;Kwon, Young Sang;Lee, Jung Han;Kim, Sun Ho;Chung, Woo Sik;Kim, Yujung;Chun, Sung-Sik;Kim, Hee Kyu;Bae, Dong-Won
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.383-388
    • /
    • 2009
  • The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature ($22^{\circ}C$), but could not detect any differences between the proteomes of wild-type and 35S: DREB2C plants. The transcript level of DREB2C in 35S: DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment (GM 파파야 개발 및 생물안전성 평가 연구 동향)

  • Kim, Ho Bang;Lee, Yi;Kim, Chang-Gi
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.

Biocidal effect to fish pathogens of Aqua farmsafe® composed of yucca extract and didecyldimethylammonium chloride (유카추출물과 didecyldimethylammonium chloride를 주성분으로 하는 살균소독제 아쿠아 팜세이프의 어류병원체에 대한 살균 효과)

  • Seo, Jung Soo;Jeon, Eun Ji;Hwang, Jee Youn;Jung, Sung Hee;Park, Myoung Ae;Lee, Sung Min;Lee, Eun Hye
    • Journal of fish pathology
    • /
    • v.26 no.2
    • /
    • pp.111-116
    • /
    • 2013
  • In this study, the disinfectant efficacy of Aqua farmsafe$^{(R)}$, composed of didecyldimethylammonium chloride (DDAC) and yucca extract was evaluated against Salmonella typhimurium and fish pathogens. Determination of the anti-microbial or anti-viral efficacy of the disinfectant was based on Animal, Plant and Fisheries Quarantine and Inspection Agency Regulation No. 2011-26, Korea. Anti-bacterial efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. Aqua farmsafe and test bacteria or virus were diluted with distilled water (DW), standard hard water (SW) or organic matter dilution (OM) according to treatment condition. Under the our results, disinfectant efficacy of Aqua farmsafe$^{(R)}$ possesses 30~40 fold against fish pathogens including bacteria and virus compared to that on animal pathogenic bacteria, S. typhimurim. As the efficacy of Aqua farmsafe$^{(R)}$ against fish pathogen was investigated in vitro, a controlled field trial is required to determine whether the use of Aqua farmsafe$^{(R)}$ will be able to reduce fish diseases.

Silage Productivity of Korean Improved and Introduced Maize Hybrids (국내 육성 및 수입 옥수수 품종의 사일리지 생산성)

  • Lee, S.S.;Yun, S.H.;Seo, J.M.;Yang, S.K.;Min, H.K.;Ryu, S.H.;Park, J.Y;Kim, S.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.323-334
    • /
    • 2004
  • Silage yield Potential and some agronomic characteristics of Korean improved and introduced corn hybrids from the United States were tested for five year in Gyeongsan, Gyeongsangbug-do and for one year in Hongcheon, Gangwon-do. 1. At 20 days after emergence, plant height and dry matter of hybrids were different, while the early growth of the hybrids was not correlated to the culm length and silage yield. 2. In Cyeongsan, silage yield potential of Suwon19 was relatively high, while most susceptible to rice black-streaked dwarf virus (RBSDV) disease and leaf senescence at harvest time. In contrast, silage yield potential and resistance to RBSDV of Cwanganok were moderate, while susceptible to leaf senescence at harvest. Generally, Suwon19 showed similar or higher yield than most introduced hybrids, while some introduced hybrids showed lower silage yield than Korean improved hybrids. Most introduced hybrids were more resistant to RBSDV and leaf senescence at harvest time compared to Korean improved hybrids. 3. In Hongcheon, silage yield of three Korean improved hybrids were lower than that of NC+5514 and DK729, while similar or higher than other introduced hybrids. af senescence of all Korean hybrids was severer compared to introduced hybrids.

Development of PVY resistant flue-cured $F_1$ hybrid variety 'KF120'

  • Kim, Jae-Hyun;Park, Yong-Hack;Chung, Youl-Young;Kim, Kwang-Chul;Shin, Seung-Gu;Kuem, Wan-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.2
    • /
    • pp.69-74
    • /
    • 2009
  • Potato Virus Y (PVY), PVY-vein necrosis strain, causes severe damage at growth, yield and leaf quality on flue-cured tobacco in Korea. The development of PVY resistant flue-cured varieties without quality deterioration is therefore urgently desired. The flue-cured tobacco, KF120 (Korea Flue-cured 120), was a male-sterile (ms) $F_1$ hybrid derived from the cross between msKF117 and KF0007-7. msKF117 was developed from the cross of NC82 with N. africana and KF0007-7 was developed from the cross of KF117 with NC82. The agronomic characteristics and disease resistance of KF120 was evaluated during 2006-2007 field performance test. It showed better growth characteristics and yield performance than standard cultivar KF109. It had 2 more leaves per plant, flowered 2 days later than KF109. The yield of cured leaf of KF120 was increased by about 5% compared to KF109. The chemical composition and physical properties of the cured leaf of KF120 were as much acceptable as those of KF109. KF120 showed high resistance to PVY compared to KF109. It showed a similar mode of resistance to bacterial wilt and black shank as was found in KF109.

A1E Induces Apoptosis via Targeting HPV E6/E7 Oncogenes and Intrinsic Pathways in Cervical Cancer Cells

  • Ham, Sun Young;Bak, Ye Sol;Kwon, Tae Ho;Kang, Jeong Woo;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yang, Young;Jung, Seung Hyun;Yoon, Do Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • A1E is an extract from traditional Asian medicinal plants that has therapeutic activities against cancers, metabolic disease, and other intractable conditions. However, its mechanism of action on cervical cancer has not been studied. In order to ascertain if A1E would have pronounced anti-cervical cancer effect, cervical cancer cells were incubated with A1E and apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blotting, Reverse-transcription polymerase chain reaction, and measurement of mitochondrial membrane potential. Expression of human papiloma virus E6 and E7 oncogenes was down-regulated in A1E-treated cervical cancer cells, while p53 and retinoblastoma protein levels were enhanced. A1E also perturbed cell cycle progression at sub-G1 and altered cell cycle regulatory factors in SiHa cervical cancer cells. A1E activated apoptotic intrinsic pathway markers such as caspase-9, caspase-3 and poly ADP-ribose polymerase, and down-regulated expression of Bcl-2 and Bcl-xl. A1E induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited phosphatidylinositol 3-kinase (PI3K)/Akt, key factors involved in cell survival signaling. Taken all these results, A1E induced apoptosis via activation of the intrinsic pathway and inhibition of the PI3K/Akt survival-signaling pathway in SiHa cervical cancer cells. In conclusion, A1E exerts anti-proliferative action growth inhibition on cervical cancer cells through apoptosis which demonstrates its anti-cervical cancer properties.

A GIS-Based Spatial Analysis for Enhancing Classification of the Vulnerable Geographical Region of Highly Pathogenic Avian Influenza Outbreak in Korea (GIS 공간분석 기술을 이용한 국내 고병원성 조류인플루엔자 발생 고위험지역 분류)

  • Pak, Son-Il;Jheong, Weon-Hwa;Lee, Kwang-Nyeong
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • Highly pathogenic avian influenza (HPAI) is among the top infectious disease priorities in Korea and the leading cause of economic loss in relevant poultry industry. An understanding of the spatial epidemiology of HPAI outbreak is essential in assessing and managing the risk of the infection. Though previous studies have reported the majority of outbreaks occurred clustered in what are preferred to as densely populated poultry regions, especially in southwest coast of Korea, little is known about the spatial distribution of risk areas vulnerable to HPAI occurrence based on geographic information system (GIS). The main aim of the present study was to develop a GIS-based risk index model for defining potential high-risk areas of HPAI outbreaks and to explore spatial distribution in relative risk index for each 252 Si-Gun-Gu (administrative unit) in Korea. The risk index was derived incorporating seven GIS database associated with risk factors of HPAI in a standardized five-score scale. Scale 1 and 5 for each database represent the lowest and the highest risk of HPAI respectively. Our model showed that Jeollabuk-do, Chungcheongnam-do, Jeollanam-do and Chungcheongbuk-do regions will have the highest relative risk from HPAI. Areas with risk index value over 4.0 were Naju, Jeongeup, Anseong, Cheonan, Kochang, Iksan, Kyeongju and Kimje, indicating that Korea is at risk of HPAI introduction. Management and control of HPAI becomes difficult once the virus are established in domestic poultry populations; therefore, early detection and development of nationwide monitoring system through targeted surveillance of high-risk spots are priorities for preventing the future outbreaks.

Cis-acting Replication Element Variation of the Foot-and-mouth Disease Virus is Associated with the Determination of Host Susceptibility (구제역바이러스의 숙주 특이성 결정에 연관되어있는 구제역바이러스 cis-acting replication element 변이 분석 연구)

  • Kang, Hyo Rin;Seong, Mi So;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.947-955
    • /
    • 2020
  • The foot-and-mouth disease virus (FMDV), a member of the Aphthovirus genus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. During replication of the FMDV RNA (ribonucleic acid) genome, FMDV-encoding RNA polymerase 3D acts in a highly location-specific manner. This suggests that specific RNA structures recognized by 3D polymerase within non-coding regions of the FMDV genome assist with binding during replication. One such region is the cis-acting replication element (CRE), which functions as a template for RNA replication. The FMDV CRE adopts a stem-loop conformation with an extended duplex stem, supporting a novel 15-17 nucleotide loop that derives stability from base-stacking interactions, with the exact RNA nucleotide sequence of the CRE producing different RNA secondary structures. Here, we show that CRE sequences of FMDVs isolated in Korea from 2010 to 2017 exhibit A and O genotypes. Interestingly, variations in the RNA secondary structure of the Korean FMDVs are consistent with the phylogenetic relationships between these viruses and reveal the specificity of FMDV infections for particular host species. Therefore, we conclude that each genetic clade of Korean FMDV is characterized by a unique functional CRE and that the evolutionary success of new genetic lineages may be associated with the invention of a novel CRE motif. Therefore, we propose that the specific RNA structure of a CRE is an additional criterion for FMDV classification dependent on the host species. These findings will help correctly analyze CRE sequences and indicate the specificity of host species for future FMDV epidemics.

Application of Multiplex RT-PCR for Simultaneous Identification of Tomato Spotted Wilt Virus and Thrips Species in an Individual Thrips on Chrysanthemum (시설재배 국화에서 총채벌레의 종 동정 및 보독 바이러스 동시 검출을 위한 다중 진단법 적용)

  • Yoon, Ju-Yeon;Yoon, Jung-Beom;Seo, Mi-Hye;Choi, Seung-Kook;Cho, In-Sook;Chung, Bong-Nam;Yang, Chang Yeol;Gangireddygari, Venkata Subba Reddy
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.264-271
    • /
    • 2020
  • We have developed a simultaneous diagnostic method that can identify both the species of thrips and tomato spotted wilt virus (TSWV) that are problematic in chrysanthemum plants. This is a method of amplifying DNA by performing reverse transcription-polymerase chain reaction by simultaneously adding primers specific to TSWV coat protein (N) gene and primers specific to the internal transcribed spacer 2 region of Frankliniella occidentalis and F. intonsa using total nucleic acid extracted from one thrips. The sizes of DNA fragments for TSWV, F. occidentalis, and F. intonsa were 777, 287, and 367 bp, respectively. These results showed species identification of thrips and whether thrips carrying TSWV can be simultaneously confirmed. Further usefulness of the simultaneous diagnostic method was made from greenhouse survey at chrysanthemum greenhouses in Taean (Chungcheongnam-do) and Changwon (Gyeongsangnam-do) to investigate the identification of thrips species and the rate of thrips carrying TSWV. Of thrips collected from the greenhouses, 83.7% thrips was F. occidentalis and 72.9% F. occidentalis carried TSWV in Taean. Similarly, the diagnostic method showed that 92.2% thrips was F. occidentalis and 84.0% F. occidentalis carried TSWV in Changwon. These results confirm that F. occidentalis is a dominant thrips species and the thrips species plays a crucial role in the transmission of TSWV in chrysanthemum plants in the greenhouses. Taken together, this study showed a simple diagnostic method for thrips identification and epidemiological studies of the timing and spread of TSWV through thrips in chrysanthemum greenhouses in South Korea.