• Title/Summary/Keyword: Plant tissue

Search Result 1,644, Processing Time 0.024 seconds

Influence of Gibberellic Acid on α-D-Galactosidase Activity in the Grape Berry

  • Kang, Han-Chul;Lee, Seon-Hwa;Kim, Jong-Bum
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • Glycosidase activities in the grape flesh (Marguerite) were assayed, and the order of activity was marked as follows: ${\alpha}$-D-galactosidase>${\alpha}$-D-mannosidase>${\alpha}$-D-glucosidase>${\beta}$-D-galactosidase>${\beta}$-D-glucosidase. Of these glycosidases, ${\alpha}$- and ${\beta}$-D-galactosidases were prominently expressed by the treatment of gibberellic acid, resulting in 56 and 238% increase of activity, respectively. Most of ${\alpha}$-D-galactosidase was found in the flesh texture, and the activity increase by gibberellic acid occurred mostly in this tissue. The increase in ${\alpha}$-D-galactosidase activity was dependent on the concentration of gibberellic acid treated, showing a positive correlation. Gibberellic acid affected the content of total protein in the grape flesh, 49% increase by 75 ppm treatment. Above this concentration, higher gibberellic acid level did not influence the protein expression. Specific activity of the ${\alpha}$-D-galactosidase still increased, showing 24% increase in activity. Grape flesh subjected by gibberellic acid (100 ppm) resulted in the increased activity against a natural substrate, stachyose, showing 55% increase in activity from the grapes treated with 100 ppm of gibberellic acid. Other natural substrates, such as melibiose and raffinose, were also considerably hydrolyzed, and the extent was similar to that of stachyose hydrolysis. During postharvest storage, ${\alpha}$-D-galactosidase activity in the grape flesh increased by 51% after 20 days and then declined slowly.

  • PDF

Cloning and Expression of Phytochelatin Synthase 1 Gene from Rhizophora stylosa Exposed to Cadmium and Copper (카드뮴과 구리에 노출된 Rhizophora stylosa 의 phytochelatin synthase 1 유전자 클로닝 및 발현)

  • Lee, Gunsup;Hwang, Jinik;Park, Mirye;Chung, Youngjae;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3114-3119
    • /
    • 2013
  • The mangrove ecosystems have the capacity to act as a sink of heavy metals entering aquatic ecosystems. Despite their potential exposure to metal contaminated sediments, mangroves appear to be highly tolerant to heavy metals. In this study, we cloned metal tolerance gene from mangrove plant. Using CTAB method, RNA were isolated from leaves and root tissue of Rhizophora stylosa habitated at Weno island in Micronesia Chuuk lagoon using CTAB method and phytochelatin synthase 1 (PCS1) gene was cloned using gene specific primers. Expression of PCS1 gene was increased 1.91 fold and 2.72 fold in mangrove propagules exposed to 100 ppb Cd and 10 ppb Cu, respectively. These results indicate that expression of PCS1 gene are promising tools for health assessment of mangrove ecosystem.

Anti-cancer Activity of Korean Local Plant Extracts Inducing Apoptosis in Various Carcinoma Cells (암세포 특이적 세포 사멸을 유도하는 자생식물 추출물의 항암 효과)

  • Yoon, Yi-Kwan;Lee, Seung-Eun;Lee, Dong-Jin;Rho, Mun-Chual;Sung, Jung-Suk;Park, Chung-Berm;Jang, Young-Joo
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.1
    • /
    • pp.6-12
    • /
    • 2009
  • Thirty five methanol extracts from 19 natural local plants, which have been used as traditional anti-cancer medicine, were prepared. They were analyzed the cytotoxic effects on primary fibroblast cells and carcinoma cells. The root extract of Solanum nigrum were highly toxic in both cell lines with $IC_{50}$ values of less than $0.01{\mu}g/{\mu}l$, and 26 of 35 extracts were toxic in all cells with $IC_{50}$ values of $0.1{\sim}2{\mu}g/{\mu}l$. Three extracts including the fruit extracts of Solanum nigrum and Morus alba had no cytotoxic activity in both cell lines. Five of 35 extracts were highly toxic in cancer cells than in primary cells. Because primary cells were more resistant on these extracts, the five extracts were selected for anti-cancer agent candidates. Apoptosis or programmed cell death has an essential role in chemotherapy-induced tumor cell killing. Recently, inducers of apoptosis have been used in cancer therapy. When two of 5 cancer cell-specific cytotoxic extracts (Ulmus parvifolia and Zelkova serrata) were treated in concentration of $0.02{\sim}0.1{\mu}g/{\mu}l$, apoptosis were increased at 3-5 times in cancer cell lines. Finally, the apoptotic effects of these extracts were confirmed by cleavages of both poly-(ADP-ribose)-polymerase and caspase-3 as apoptotic markers. In this report, we suggested that two of 35 medicinal herb extracts can be useful anti-cancer drug candidates inducing apoptosis in several carcinoma cell lines.

Anti-Oxidative Effect of Myrtenal in Prevention and Treatment of Colon Cancer Induced by 1, 2-Dimethyl Hydrazine (DMH) in Experimental Animals

  • Lokeshkumar, Booupathy;Sathishkumar, Venkatachalam;Nandakumar, Natarajan;Rengarajan, Thamaraiselvan;Madankumar, Arumugam;Balasubramanian, Maruthaiveeran Periyasamy
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.471-478
    • /
    • 2015
  • Colon cancer is considered as the precarious forms of cancer in many developed countries, with few to no symptoms; the tumor is often diagnosed in the later stages of cancer. Monoterpenes are a major part of plant essential oils found largely in fruits, vegetables and herbs. The cellular and molecular activities show therapeutic progression that may reduce the risk of developing cancer by modulating the factors responsible for colon carcinogenesis. Colon cancer was induced with DMH with a dose of (20 mg/Kg/body weight) for 15 weeks by subcutaneous injection once in a week. Myrtenal treatment was started with (230 mg/Kg/body weight) by intragastric administration, one week prior to DMH induction and continued till the experimental period of 30 weeks. The Invivo results exhibit the elevated antioxidant and lipid peroxidation levels in DMH treated animals. The Histopathological analysis of colon tissues well supported the biochemical alterations and inevitably proves the protective role of Myrtenal. Treatment with myrtenal to cancer bearing animals resulted in a remarkable increase in the inherent antioxidants and excellent modulation in the morphological and physiological nature of the colon tissue. It is thus concluded that myrtenal exhibits excellent free radical scavenging activity and anticancer activity through the suppression of colon carcinoma in Wistar albino rats.

Fertilization and Embryo Development in Pollination and Culture for Interspecific and Intergeneric Crossing of Forage Crops (기내 수분과 배양에 의한 화본과 사료작물 종속간 수정과 배의 발육)

  • 이호진;한지연
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1987
  • The ovaries or the ovules of grasses were pollinated and cultured in vitro to raise the interspecific or the intergeneric hybrids between tall fescue, meadow fescue, and Italian ryegrass. The isolated and suface-sterili-zed pistils were dusted with compatible pollens on stigma, on stump after removing stigma, or on excised ovule. Furthermore, the fertilized ovaries and ovules were cultured on MS, M6, or White's media and treated with plant growth regulators: IAA, kinetin, BA to promote embryo development and seed maturity. The in vitro fertilization in grass species ranged from 44 to 92% depending on ovary and pollen parents. The stigmatic pollination was resulted in 67.8% fertilization, the stump pollination 89.0%, and the excised ovule pollination 61.0%, repectively. White's medium was the most effective to provide embryo development and seed maturity in grass species. And the combined treatment of IAA 10mg/$\ell$, kinetin 0.2mg/$\ell$, was better than the non-treatment. Only two seedlings, one complete and one abnormal with root formation were obtained from 127 ovaryies cultured. The anatomy of ovules in vitro cultured was revealed the differentiation of vascular system and meristematic tissue, and the formation of sclerenchyma cells inside ovule.

  • PDF

Effects of Nitrogen Supply Levels on Growth and Nitrogen Substance in Pear (Pyrus pyrifolia cv. Niitaka) Seedlings (질소 시용수준에 따른 배 '신고' 실생묘의 생육과 질소관련물질의 변화)

  • Jin, Song-Nan;Choi, Dong-Geun;Kang, In-Kyu;Han, Kwang-Soo;Choi, Cheol
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.84-90
    • /
    • 2006
  • This study was conducted to anticipate nitrate reduction state in tree through measurement of nitrate reductase activity (NRA) and investigate the effect of nitrogen concentrations (100, 200, 400, and 600 $mg\;L^{-1}$) on growth, the nitrogen content of various tissue, and NRA of pear (Pyrus pyrifolia cv. Niitaka) seedlings in sand culture. Nutrient solutions used in this experiment were adjusted to pH 6.5 and fixed the ratio of ammonium and nitrate to 1:3 and trickle-irrigated 3 times a day. Tree height and dry weight of various organs in seedlings were higher in low nitrogen concentration (100 and 200 $mg\;L^{-1}$) than in high nitrogen concentration (400 and 600 $mg\;L^{-1}$). The shoot growth in 600 $mg\;L^{-1}$ was extremely poor by nitrogen over supply. Increasing the nitrogen concentration, the concentration of nitrate-N in leaves and roots were insignificantly changed but that of stems increased. The accumulation of total and reduced nitrogen in all organs with increasing concentrations of nitrogen supply were increased at 30 days after treatment but those of all organs at 60 and 90 days after treatment were highest in 600 $mg\;L^{-1}$, whereas there were no significant changes among other nitrogen concentration. The in vivo (${+NO_3}^-$) NRA of all organs did not relate to nitrogen concentration but the in vivo (${-NO_3}^-$) NRA of leaves except roots increased with increasing the nitrogen concentration. Therefore, the proper nitrogen concentration to promote growth and nitrate reduction of pear tree was 200 $mg\;L^{-1}$.

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.

Antimicrobial Efficacy of Penicillium amestolkiae elv609 Extract Treated Cotton Fabric for Diabetic Wound Care

  • Rozman, Nur Amiera Syuhada Binti;Hamin, Nurhanis Syafiqah Binti Mohd Nor;Ring, Leong Chean;Nee, Tan Wen;Mustapha, Mahfuzah Binti;Yenn, Tong Woei
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.178-183
    • /
    • 2017
  • Diabetes mellitus is a chronic disorder which affects millions of population worldwide. Global estimates published in 2010 reported the world diabetic prevalence as 6.4%, affecting 285 million adults. Foot ulceration and wound infection are major forms of disabilities arising from diabetic diseases. This study was aimed to develop a natural antimicrobial finishing on medical grade textile that meets American Association of Textiles Chemists and Colorists (AATCC) standard. The textile samples were finished with the ethanolic extract of Penicillium amestolkiae elv609, an endophytic fungus isolated from Orthosiphon stamineus Benth (common name: cat's whiskers). Endophyte is defined as microorganism that reside in the living plant tissue, without causing apparent disease symptom to the host. The antimicrobial efficacy of the ethanolic extract of P. minioluteum was tested on clinical pathogens isolated from diabetic wound. The extract exhibited significant inhibitory activity against 4 bacteria and 1 yeast with the minimal inhibitory concentration ranged from 6.25 to 12.5 mg/mL. The results indicate different susceptibility levels of the test microorganism to the ethanolic extract. However, the killing activity of the extract was concentration-dependent. The finished medical textile showed excellent antimicrobial efficacy on AATCC test assays. All the microbial cultures treated with the textile sample displayed a growth reduction of 99.9% on Hoheinstein Challenge Test. The wash durability of the finished textile was found good even after 50 washes with commercial detergent. Besides, the gas chromatography mass spectrometry analysis showed that 6-octadecenoic acid and diethyl phthalate were the main bioactive constituents of the extract. In conclusion, the developed medical textile showed good antimicrobial efficacy on laboratory tests. This work can be extended to in vivo trials for developing healthcare textile products for antimicrobial applications.

Improved Resistance to Oxidative Stress by a Loss-of-Function Mutation in the Arabidopsis UGT71C1 Gene

  • Lim, Chae Eun;Choi, Jung Nam;Kim, In A;Lee, Shin Ae;Hwang, Yong-Sic;Lee, Choong Hwan;Lim, Jun
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.368-375
    • /
    • 2008
  • Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.

De novo genome assembly and single nucleotide variations for Soybean yellow common mosaic virus using soybean flower bud transcriptome data

  • Jo, Yeonhwa;Choi, Hoseong;Kim, Sang-Min;Lee, Bong Choon;Cho, Won Kyong
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.189-195
    • /
    • 2020
  • The soybean (Glycine max L.), also known as the soya bean, is an economically important legume species. Pathogens are always major threats for soybean cultivation. Several pathogens negatively affect soybean production. The soybean is also known as a susceptible host to many viruses. Recently, we carried out systematic analyses to identify viruses infecting soybeans using soybean transcriptome data. Our screening results showed that only few soybean transcriptomes contained virus-associated sequences. In this study, we further carried out bioinformatics analyses using a soybean flower bud transcriptome for virus identification, genome assembly, and single nucleotide variations (SNVs). We assembled the genome of Soybean yellow common mosaic virus (SYCMV) isolate China and revealed two SNVs. Phylogenetic analyses using three viral proteins suggested that SYCMV isolate China is closely related to SYCMV isolates from South Korea. Furthermore, we found that replication and mutation of SYCMV is relatively low, which might be associated with flower bud tissue. The most interesting finding was that SYCMV was not detected in the cytoplasmic male sterility (CMS) line derived from the non-CMS line that was severely infected by SYCMV. In summary, in silico analyses identified SYCMV from the soybean flower bud transcriptome, and a nearly complete genome of SYCMV was successfully assembled. Our results suggest that the low level of virus replication and mutation for SYCMV might be associated with plant tissues. Moreover, we provide the first evidence that male sterility might be used to eliminate viruses in crop plants.