• Title/Summary/Keyword: Plant stress

Search Result 2,198, Processing Time 0.036 seconds

Growth Characteristics and Yield of "Baeck Ji 1" a New High Variety of Angelica dahurica (白芷 新品種 "白芷 1號" 의 主要特性 및 收量性)

  • 정상환
    • Korean Journal of Plant Resources
    • /
    • v.10 no.1
    • /
    • pp.100-104
    • /
    • 1997
  • A new baekji(Angelica dahurica Bentham et Hooker) variety, Baekji l, was developed through a pure line selection at the Gyeongbug Provincial RDA during the period of 1990 to 1995. The variety was characterized to have high plant height. Long root length and large root diameter as compared with a check varicty of Bonghwa baekji but emergence date, flowering date and leaf number of Baekji l was similar to that of the check variety, and it was also more tolerant to nematode and heat stress. Peeled root color of Backji l was yellowbrown but number of the lateral root of the variety was greater. The dried-root yield of Baekji l in yield trial, regional adaptation trial and farmer's field trial was always $21\sim31%$ higher than that of the check variety.

  • PDF

Classification for Types of Damages Caused by Cold Stress at Different Young Spike Development Stages of Barley and Wheat (맥류의 유수발육기 저온장해유형과 피해시기 분류)

  • 구본철;박문웅;김기준;안종국;이춘우;윤의병
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.252-261
    • /
    • 2003
  • Although the young spike of barley (Hordeum vulgare L.) or wheat (Triticum aestivum L.) is known as the most susceptible part to spring cold injury, the risk of cold injury is apt to be ignored in most breeding program due to the importance of early maturity. Based on these aspects, the types and inducing time, temperature conditions for induction and effects of cold injury on growth and yield in this study were investigated under greenhouse and field conditions through three years (1997-1999). In natural condition, low temperature around -2.4∼$-10.2^{\circ}C$ caused the death of plant. Several cold injury types such as partial degeneration of spike, partial discoloration of leaf, spike and awn, discoloration of culm and white spike were observed at low temperature around $-3.1^{\circ}C$. Low temperature around -2.4∼$-8.6^{\circ}C$ and 1.3-$7.6^{\circ}C$ caused degeneration and sterility of spike, respectively. Most materials were prepared to the spikelet foundation stage, spikelet differentiation stage, development stage of flower organ, booting stage and heading stage, which were known having risk for cold injury in field condition. Although most of the controlled stages were sensitive to the induced low temperature, booting stage was the most sensitive stage for cold injury. All of growth stages which were treated-heading stage, booting stage, development stage of flower organ, spikelet differentiation stage, spikelet foundation stage-were responded to low temperature treatment but the symptoms revealed were very specific according to the growth stages. Ears of plant in heading stage were discolored to white. Ears of plant in booting stage were degenerated in all or part of one. Plants in spikelet differentiation stage were sterile in all or part of one. When tried to detect the specific differences between normal and cold injured plants in appearance, spike length, distance between spike and flag leaf and the first internode length could be the critical points for occurrence of spike death caused by cold injury. In barley, the elongation of spike was stopped on 3.2cm after occurrence of spike degeneration, 4.7cm after occurrence of partial degeneration of spike, 5.0cm after occurrence of white spike. In wheat, it was stopped on 1.6cm after occurrence of stem death, 3.3cm after occurrence of spike degeneration, 8.3cm after occurrence of partial degeneration of spike, 8.1cm after occurrence of white spike, 7.5cm after partial discoloration of leaf and 9.3cm after partial discoloration of spike. The obtained results from low temperature treatment induced in growth chamber were similar to the field experiment, Beacuse the death of spikes was more when low temperature was treated two times than one times, the temperature should be upgrade to -3$^{\circ}C$ in order to get the same condition with field test.

Effects of Duckling training on Behavior and Rice Yield in Paddy Fields (오리 순치방법이 논 방사후 행동과 벼 수량에 미치는 영향)

  • Goh, B. D.;Maezono, Y.;Manda, M.;Song, Y. H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.649-658
    • /
    • 2003
  • Early introducing the ducks into the paddy field involves a variety of environmental changes such as new surroundings and contact with water, so that some free-ranged ducks show behavioral and physiological changes indicative of stress or die from not adapted for new circumstances. Moreover, the free-ranged ducks was tread on the rice plant, and required a great deal of labor and time for captured the ducks after finishing the introducing. The aim of the present study was to examine the effect of accustoming and imprinting of duckling on behavior patterns, body weight gain and yield of the rice plant in paddy fields. Three paddy plots were used as control (no imprinting and no contact with people), taming (imprinting and regular handling) and roughness (handling roughly and strike terror to ducks) plots. Right after introducing the ducks into the paddy field, eating and moving behaviour of taming plot ducks tended to be longer time spend than that of other treatments. However, eating and moving time tended to be longer in the control than that of other two treatments on the 2 weeks after. Flighting distance was not showed in the free-ranging period taming plot, but the control plot was significantly (P<0.05) longer than the roughness plot. The captured time of free-ranged ducks tended to be shorter in the order of taming, control and roughness plots. Body weight gains was not significant. The number of rice plants damaged by free-ranging ducks in the taming plot were significantly (P<0.05) less than that in the control plot, but the yield and yield components of the rice plant were not differ among 3 treatments. These results indicated that the imprinting or regular handling and related treatments of duckling was reducing badly damage of rice plants, captured time and labor of free-ranged ducks in paddy field, although the working behavior of ducks and yield ability of the rice plants were not affected.

Comparison of the High Concentration Calcium Chloride(CaCl2) Salt Reduction Effect of Soil Amendment Agent and Planting Pennisetum alopecuroides (토양개량제와 수크령 식재에 따른 고농도 염화칼슘 염분저감 효과 비교)

  • Yang, Ji;Park, Jae-Hyeon;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • The purpose of this study was to investigate the effects of soil amendment treatments, such as hydroball, and active carbon, and planting Pennisetum alopecuroides for reducing calcium chloride (CaCl2) of soil leachate and the growth of Pennisetum alopecuroides. The experiment planted Pennisetum alopecuroides in a plastic pot with a diameter of 10 cm and a height of 9 cm in a greenhouse April-October 2018. The experimental group comprised six treatments, including Non-treatment (Cont.), Hydroball (H), Active carbon (AC), planting Pennisetum alopecuroides (P), hydroball + planting Pennisetum alopecuroides (H + P), and active carbon + planting Pennisetum alopecuroides (AC + P). The dissolution of the CaCl2 concentration 200ml of 10g/L was irrigated once every two weeks. We measured the growth (plant height, leaf length, leaf width, number of leaves), EC, pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) according to the high concentration of CaCl2 in the plant and soil leachate. In a treatment with the 'hydroball' amendment, the soil leachate electrical conductivity (EC), and the cation exchangeable were decreased more than those of the control, while the growth of Pennisetum alopecuroides relative growth rate(RGR) increased. Overall, application with the hydroball amendment added the planting of Pennisetum alopecuroides improved the salt reduction effect more than the control group. These results indicate that the application of the soil amendment agent hydroball was suitable soil amendments in accordance with the high concentration of calcium chloride (CaCl2). Also, Planting Pennisetum alopecuroides is expected to be appropriate for salt-tolerant plant for soil affected by deicing salt agents.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF

Comparative Analysis of Growth and Antioxidant Enzyme Activities from Two Chrysanthemum Varieties, 'ARTI-purple' and 'ARTI-queen' by Chronic Irradiation of Gamma-ray (감마선 완조사에 따른 국화 'ARTI-purple'과 'ARTI-queen'의 생육 및 항산화 효소 활성 비교 분석)

  • Sung, Sang Yeop;Lee, Yu-Mi;Kim, Sang Hoon;Ha, Bo-Geun;Kang, Si-Yong;Kim, Jin-Baek;Kim, Dong Sub
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2013
  • Two chrysanthemum varieties, 'ARTI-purple' and 'ARTI-queen', were chronically irradiated with doses of 30, 50, 70, and 100 Gy for four weeks in gamma-phytotron, a long term irradiation facility. We investigated the growth, responses of antioxidant enzymes (ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD; superoxidase dismutase, SOD) and malondialdehyde (MDA) contents under different doses of chronic-irradiation. The five plant growth measurements including plant height, number of leaves, internode length, stalk diameter and leaf thickness were investigated immediately after four week irradiation. The plant height (p<0.001), internode length (p<0.01), the number of leaves (p<0.001) and stalk diameter (p<0.05) were significantly decreased an increasing doses of gamma-ray. Among them, especially, the internode length was remarkably decreased showing the RD50 (Reduction Dose 50) at approximately 65 Gy. The antioxidant response after four weeks of recovery period, ascorbate peroxidase (APX) (p<0.01), superoxide dismutase (SOD) (p<0.01) and peroxidase (POD) (p<0.001) were significantly increased with an increasing dose of gamma-ray. And malondialdehyde (MDA) (p<0.01) contents showed the significant increase at the 70 and 100 Gy which means the oxidative stress was lasting for a considerable period. In this study, the 50 Gy irradiation as optimal dose showed higher growth than the $RD_{50}$, it also showed insignificant differences on the antioxidant responses and MDA contents. However, the 100 Gy dose showed lower growth than $RD_{50}$.

Physiological Response of Four Corn Cultivars to Soil Salinity (토양염농도에 따른 식용옥수수 품종들의 생장특성)

  • Kim, Sun;Choi, Weon-Young;Jeong, Jae-Hyeok;Lee, Kyung-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • This study conducted experiments on the reclaimed land of Saemangeum located in Jeongrabuk-do in order to gain basic information about growth characteristics and yield ability according to soil salinity. Having soil excluding salt as a control group, this study adjusted the specimens' soil salinity to level 4 and then planted four varieties including Ilmichal Corn to investigate the growth or grain yield according to salinity. About the corn establishment rate according to soil salinity, over 97% up to $3.2dS\;m^{-1}$ was established, and then, it was reduced gradually according to the increase of concentration. According to the salt concentration of soil more required growth duration from seeding to heading comparing to non-treatment salt was delayed, at $1.6dS\;m^{-1}$, two days were delayed, at $3.2dS\;m^{-1}$, four to six days were delayed differently by varieties, and at $4.8dS\;m^{-1}$, six to 10 days were delayed. About the plant fresh weight according to soil salinity, Chalok 4 and Eolrukchal indicated 93%~97% or so compared with the salt-free one at $1.6dS\;m^{-1}$, and Chalok No. 4 showed 79% at the salinity of $3.2dS\;m^{-1}$, too, and it was a relatively higher growth percentage than those of the other varieties. In terms of dried seed weight according to soil salinity, compared with the corns cultivated in the control group, averagely 12.1% was lowered at the time of cultivation at $1.6dS\;m^{-1}$, and $3.2dS\;m^{-1}$ 40% was lowered, and about 70% was lowered at $4.8dS\;m^{-1}$. According to the result of examining the point of time that dried seed start to reduce due to soil salinity with the regression equation, soil salinity which starts the reduction of grain weight is $1.67dS\;m^{-1}{\sim}2.18dS\;m^{-1}$, and it differs by varieties, and EC of 50% that the yield reduces in half is $2.96dS\;m^{-1}{\sim}4.45dS\;m^{-1}$. And the degree of influence on each of the growth factors according to soil salinity is founded to be in the order of establishment rate

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Morphological Adaptation of Zostera marina L. to Ocean Currents in Korea (한국산 거머리말(Zostera marina L.)의 해류에 대한 형태적 적응)

  • Lim, Dong-Ok;Yun, Jang-Tak;Han, Kyung-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The main purpose of this research is to prepare and provide basic materials for the propagational strategy of eelgrass by investigating on the morphological adaptation of Korean Zostera marina to ocean currents. An eelgrass plant mainly consists of rhizome, leaf sheath, leaves and roots. The rhizome is the horizontal stem of the plant that serves as the backbone from which the leaves and roots emerge. The leaf sheath is the bundle at the base of the leaves that holds the leaves together, protecting the meristem, the primary growth point of the shoot. Leaves originate from a meristem which is protected by a sheath at the actively growing end of the rhizome. As the shoot grows, the rhizome elongates, moving across or within the sediment, forming roots as it progresses. The aggregated leaves from the leaf sheath are found to have two cell layers on one side and multiple layers of airy tissues called aerenchyma on the other. The aerenchyma tissues are developed in multi-layered cell structures surrounding the veins which are formed in the leaf sheath. Generative shoots are made of rhizomes, which are circular or ovoidal, stem, and spathe and spadix. The transverse section of rhizome and the stem and central floral axis is found to be circular, ovoid and in the shape of convex respectively, and the vascular bundle, which is a part of transport system, has one large tube in the center and two small tubes on both sides. The layers of collenchyma cells numbered from 12 to 15 in the stem, and from 7 to 12 in the rhizome. The seed coat is composed of sclereids, small bundles of sclerenchyma tissues, which prevent the influx of sea water from the outside and help endure the environmental stress. In conclusion, alternative multi-layer structure in circular, convex type aggregated leaf base are interpreted to morphological adaption as doing tolerable elastic structure through movement of seawater. The generative shoots develop long slim stem and branches in circular or ovoidal shapes to minimize the adverse impacts of sea current, which can be interpreted as the plant's morphological adaptation to its environment.

Antioxidant Activity of Rubus crataegifolius Bge. Fruit Extracts (Rubus crataegifolius Bge. 열매 추출물의 항산화 활성)

  • Moon, Kyoung-Mi;Kim, Ji-Eun;Kim, Hae-Young;Lee, Jae-Seol;Son, Gi-Ae;Nam, Soo-Wan;Kim, Byung-Woo;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1214-1218
    • /
    • 2011
  • We investigated the fruits of Rubus crataegifolius Bge, a plant which has been traditionally used in Korea in phytotherapy, to describe antioxidant materials from plant sources. R. crataegifolius fruits were extracted with methanol and further fractionated into n-hexane, diethyl ether, and ethyl acetate. The antioxidant activity of each fraction and the residue was assessed using a 1,1-diphenyl-2-picrylhydrazyl (DPPH), $H_2O_2$ radical scavenging method, and their cytotoxicity on human primary kerationcyte (HK) was determined by an MTS assay. The R. crataegifolius fruit methanol extract showed strong antioxidant activity (75.04%, 50%) compared with vitamin C (79.9%, 54.1%) by the DPPH, and $H_2O_2$ method, respectively. The measured activity from the subsequent extracts of the methanol extract were 20.3% for n-hexane fraction (HF), 68.8% for diethyl ether fraction (DF), 67.1% for ethyl acetate fraction (EF), and 67.1% for the residue fraction (RE) by DPPH and 2.2% for HF, 1.6% for DF, 10% for EF, and 50% for the RE by $H_2O_2$ assay. An oxidative stress model of HK was established under a suitable concentration (1 mM). The cell viability of the RE treated group increased and the percentage of apoptotic cells decreased at concentrations of 0.005-0.02% RE compared with the $H_2O_2$ treated group. Fruit extracts of the medicinal plant R. crataegifolius showed potent antioxidant activity and the ability to relieve cell damage from $H_2O_2$ induced injury to HK.