• Title/Summary/Keyword: Plant protein source

Search Result 169, Processing Time 0.142 seconds

Effects of Timing of Initial Cutting and Subsequent Cutting on Yields and Chemical Compositions of Cassava Hay and Its Supplementation on Lactating Dairy Cows

  • Hong, N.T.T.;Wanapat, M.;Wachirapakorn, C.;Pakdee, P.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1763-1769
    • /
    • 2003
  • Two experiments were conducted to examine the production and quality of cassava hay and its utilization in diets for dairy cows. In experiment I, a $2{\times}2$ Factorial arrangement in a randomized complete block design with 4 replications was carried out to determine the effects of different initial (IC) and subsequent cutting (SC) on yield and composition of cassava plant. The results revealed that cassava could produce from 4 to 7 tonne of DM and 1.2 to 1.6 tonne of CP for the first six months after planting. CP content in cassava plant ranged from 20.8 to 28.5% and was affected by different SC regimes. Condensed tannin in cassava foliage ranged from 4.9 to 5.5%. Initial cutting at 2 months with subsequent cutting at 2 month intervals was the optimal to obtain high dry matter and protein yield. In the second experiment, five crossbred Holstein-Friesian cows in mid lactation with an initial live-weight of 505${\pm}6.1kg$ and average milk yield of 10.78${\pm}1.2kg/d$ were randomly assigned in a $5{\times}5$ Latin square design to study the effects of 2 levels of CH (1 and 2 kg/hd/d) and concentrate (1 to 2 kg of milk and 1 to 3 kg of milk) on milk yield and milk composition. The results showed that cassava hay increased rumen $NH_3-N$ and milk urea nitrogen (MUN) (p<0.05). Cassava hay tended to increase milk production and 4% FCM. Milk protein increased in cows fed cassava hay (p<0.05). Moreover, cassava hay could reduce concentrate levels in dairy rations thus resulting in increased economic returns. Cassava hay can be a good source of forage to reduce concentrate supplementation and improve milk quality.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

Expression profile of defense-related genes in response to gamma radiation stress (방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석)

  • Park, Nuri;Ha, Hye-Jeong;Subburaj, Saminathan;Choi, Seo-Hee;Jeon, Yongsam;Jin, Yong-Tae;Tu, Luhua;Kumari, Shipra;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

Nutritional Values of Red Pepper Seed Oil Meal and Effects of Its Supplementation on Performances and Physiological Responses of Broiler Chicks

  • An, B.K.;Im, H.J.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.971-975
    • /
    • 2007
  • Two experiments were conducted to evaluate the feeding values of red pepper seed oil meal (RPSOM) and to investigate its dietary supplementation on broiler performances. In Exp. 1, nutritional values of RPSOM were evaluated by analyzing chemical composition and determining true metabolizable energy (TME), nitrogen corrected TME (TMEn) and true available amino acid (TAAA). RPSOM contained 22.50% of CP, 4.75% of ether extract, 27.70% of crude fiber, 4.73% of crude ash and 49.97 ppm of xanthophylls. The contents of capsaicin and dihydrocapsaicin were 34 mg and 31 mg/100 g DM, respectively. The values of TME and TMEn determined by force-feeding 16 roosters were 1.73 kcal/g and 1.63 kcal/g DM, respectively. The average TAAA value of 17 amino acids was 85.22%. In Exp. 2, a total of 225 Ross male broiler chicks, 3 weeks old, were randomly divided into 9 groups of 25 birds each and assigned to three experimental diets containing 0 (control), 5 or 10% RPSOM fed ad libitum for 3 weeks. No significant differences were observed in growth performances and carcass characteristics. The level of serum cholesterol in the 10% RPSOM group was significantly lower than that of the control group (113.92 vs. 137.50 mg/dl). The dietary RPSOM at 5 and 10% levels increased the content of C18:2 ${\omega}{\sigma}$ in leg muscle compared with the control group. The results suggested that RPSOM can be included into broiler feed up to 10% without any negative effects on broiler performances and physiological responses and used as a non-conventional plant protein source, if its nutritional values are well evaluated.

α-Glucosidase Inhibitory Activity of the Ethanol Extract of Peanut (Arachis hypogaea L.) Skin (땅콩 속껍질 에탄올 추출물의 알파-글루코시데이즈 억제활성)

  • Ha, Tae Joung;Lee, Myoung Hee;Oh, Eunyoung;Kim, Jung In;Song, Seok Bo;Kwak, Doyeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Background: Owing to its high efficiency in lipid and protein production, peanut (Arachis hypogaea L.) is considered one of most important crops world-wide. The kernels of peanuts are undoubtedly the most important product this plant, whereas the skin is almost completely neglected in nutraceutical terms. However, peanut skin contains potentially health-promoting phenolics and dietary fiber, and there is considerable potential for commercial exploitation. In this study, we evaluated the α-glucosidase inhibitory activity of an extract of peanut skin (PS). Methods and Results: The α-glucosidase inhibitory effects of 80% ethanol extracts of peanut (A. hypogaea L. 'Sinpalkwang') skin were evaluated and found to have a half-maximal inhibitory concentration (IC50) value of 1.2 ㎍/㎖. Progress curves for enzyme reactions were recorded spectrophotometrically, and the inhibition kinetics revealed time-dependent inhibition with enzyme isomerization. Furthermore, using ultra-high performance liquid chromatography combined with quadrupole-orbitrap mass spectrometry, we identified 26 compounds in the peanut skin extract, namely, catechin, epicatechin, and 24 proanthocyanidins. Conclusions: The results suggest that peanut skin can be utilized as an effective source of α-glucosidase inhibition in functional foods and nutraceuticals.

Characterization of Heterochlorella luteoviridis (Trebouxiaceae, Trebouxiophyceae) isolated from the Port of Jeongja in Ulsan, Korea

  • Kim, Kyeong Mi;Kang, Nam Seon;Jang, Hyeong Seok;Park, Joon Sang;Jeon, Byung Hee;Hong, Ji Won
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • A unicellular green alga was axenically isolated from the Port of Jeongja, Ulsan, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Heterochlorella luteoviridis. This is the first report of this species in Korea. The microalgal strain was named as H. luteoviridis MM0014 and its growth, lipid composition, and biomass properties were investigated. The strain thrived over a wide range of temperatures ($5-30^{\circ}C$) and withstood up to 0.5 M NaCl. The results of gas chromatography/mass spectrometry analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids. Its major fatty acids were linoleic acid (35.6%) and ${\alpha}$-linolenic acid (16.2%). Thus, this indigenous marine microalga is a potential alternative source of ${\omega}3$ and ${\omega}6$ polyunsaturated fatty acids, which are currently obtained from fish and plant oils. Ultimate analysis indicated that the gross calorific value was $19.7MJ\;kg^{-1}$. In addition, the biomass may serve as an excellent animal feed because of its high protein content (51.5%). Therefore, H. luteoviridis MM0014 shows promise for applications in the production of microalgae-based biochemicals and biomass feedstock.

Contents of Isoflavones and Antioxidative Related Compounds in Soybean Leaf, Soybean Leaf Jangachi, and Soybean Leaf Kimchi (콩잎 밑 콩잎 요리의 이소플라본 함량 및 항산화 관련 성분들의 비교)

  • Ryu Seung-Hee;Lee Hye-Suk;Lee Young-Soon;Moon Gap-Soon
    • Korean journal of food and cookery science
    • /
    • v.21 no.4 s.88
    • /
    • pp.433-439
    • /
    • 2005
  • Soybean is an important plant as it is the source of protein and oil as well as various phytochemicals that are related with biological activity. Over the past decades, scientists have conducted considerable research on the physiological properties of soybeans, especially isoflavones, which are the characteristic components in soybeans. However, there is no research on the properties or the bio-functionality of soybean leaf. Jangachi and kimchi are two of the traditional special dishes of Gyungsang Province in Korea which we made from soybean leaves. Depending on the recipe, green or yellow soybean leaves are used for the preparation of these two side dishes. We compared the antioxidative activity and measured the contents of isoflavones, total phenol, chlorophylls, carotenoids, and vitamin C in the ingredients (green and yellow soybean leaf) and the final side dishes (jangachi and kimchi). We Int report that isoflavones were contained in soybean leaf and that jangachi had the highest isoflavone contents among the samples. Yellow soybean leaf contained higher isoflavones than green soybean lear and kimchi. From the TEAC assay results, the sequence or antioxidative activities was yellow soybean leaf > soybean leaf jangachi > green soybean leaf > soybean leaf kimchi. The sequence was the same with total phenol contents, indicating that antioxidative activity is highly related with total phenol level. Chlorophylls, carotenoids and vitamin C existed abundantly in green soybean leaf. In conclusion, soybean leaf could be a good material for health due to the presence of isoflavones and the other useful antioxidants mentioned above.

Characterization of Tofu-Residue Hydrolyzing Carbohydrase Isolated from Aspergillus niger CF-34 (Aspergillus niger CF-34로부터 분리한 두부 또는 두유비지 가용화 복합효소의 특성)

  • Kim, Kang-Sung;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.490-495
    • /
    • 1994
  • Enzymatic solubilization of tofu-residue was attempted using carbohydrase isolated from Aspergillus niger CF-34. Tofu-residue, by-product of tofu manufacture or soymilk processing was used as the model for plant cell wall. It was found that tofu-residue was rich in nurients: 46.7% carbohydrate, 32.8% protein, the rest being lipid and ashes. Carbohydrate component of tofu-residue consisted of 36.8% cellulose and 62.6% hemicellulose. The carbohydrase was found to consist of pectinase, xylanase, PGase, CMCase, and SFase when tofu-residue and pectin were used as the carbon source. Enzyme induction was maximum at 7days of culture. Optimum reaction pH was 4.0, temperature $50^{\circ}C$. The enzyme was stable to $50^{\circ}C$, above which the stability decreased rapidly.

  • PDF

Different Levels of N Supply Impacts on Seed Yield by Modulating C and N Metabolism in Brassica Napus

  • Lee, Bok-Rye;Lee, Hyo;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Oilseed rape is known to crop having low nitrogen use efficiency (NUE) but requires high levels of N fertilizer. NUE is associated with N remobilization from source to sink organ, consequently affects seed yield. Remobilization of leaf N is also related to transport of C/N metabolites in phloem. However, interaction between seed yield and phloem transport was not fully documented. In response to seed yield, N and C metabolites and their transport into seed from bolting to pod filling stage investigated in two contrasting genotypes (Capitol and Pollen) cultivated under ample (HN) or limiting nitrate (LN) supply. Seed yield was significantly reduced in N limitation and its reduction rate was much lower in Capitol than in Pollen compared to HN treated plants. Amino acid and protein content was higher in Capitol than in Pollen at bolting stage. They gradually decreased during plant development but not significant between two cultivars and/or two treatments. Glucose, fructose and sucrose content were 1.8-,1.6- or 1.25-fold higher in LN condition than in HN condition, respectively. Amino acid and sucrose content in phloem were largely higher in Capitol than in Pollen under LN condition. These results indicate that the higher seed yield might be related to greater transport ability of amino acid and sucrose in phloem under LN condition.

Genomics Approach to Identify the Cause of the Missing Omega-5 Gliadin Protein in O-Free Wheat

  • Lee, Yun Gyeong;Choi, Sang Chul;Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.413-425
    • /
    • 2018
  • A previous work developed and identified a new omega-5 gliadin deficient wheat line named O-free by crossing Keumkang and Olgeuru, which is nutritionally quite meaningful in that omega-5 gliadin is one of the known wheat allergens. To verify the characteristics of the O-free, we performed RNA sequencing (RNAseq) analysis of the O-free and the two parent lines (Keumkang and Olgeuru). The results of the similarity analysis with the ESTs for gliadins and glutenins showed that the O-free ESTs had no similarity with the omega-5 gliadin sequences but had similarity to other gliadins and glutenins. Furthermore, mapping results between the raw RNAseq data from the O-free and the omega-5 gliadin sequence showed a clear deletion of the N-terminal sequences which are an important signature of omega-5 gliadin. We also designed specific PCR primers that could identify omega-5 gliadin in the genomic DNA. The results showed that no omega-5 gliadin fragments were detected in the O-free. According to these results, we confirmed that the deficiency of omega-5 gliadin in the O-free is not caused by post-transcriptional or post-translational regulations such as epigenetic phenomena but by a simple deletion in the chromosome. Furthermore, we showed that the low-molecular weight glutenin subunit (LMW-GS) gene in the O-free had a single nucleotide polymorphism (SNP) causing a premature stop codon, resulting in a truncated polypeptide. We expect that the O-free line may serve as an excellent source of wheat that could prevail in the hypo-allergen wheat market, which has recently gained interest world-wide.