DOI QR코드

DOI QR Code

방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석

Expression profile of defense-related genes in response to gamma radiation stress

  • Park, Nuri (Dept. of Horticulture, Chungnam National University) ;
  • Ha, Hye-Jeong (Dept. of Horticulture, Chungnam National University) ;
  • Subburaj, Saminathan (Dept. of Horticulture, Chungnam National University) ;
  • Choi, Seo-Hee (Dept. of Horticulture, Chungnam National University) ;
  • Jeon, Yongsam (Dept. of Horticulture, Chungnam National University) ;
  • Jin, Yong-Tae (Dept. of Horticulture, Chungnam National University) ;
  • Tu, Luhua (Dept. of Horticulture, Chungnam National University) ;
  • Kumari, Shipra (Dept. of Horticulture, Chungnam National University) ;
  • Lee, Geung-Joo (Dept. of Horticulture, Chungnam National University)
  • 투고 : 2016.09.06
  • 심사 : 2016.09.15
  • 발행 : 2016.09.30

초록

자주달개비는 닭의장풀과의 다년생 식물로, 자주달개비의 수술털은 이온화 방사선에 노출될 경우 분홍색 또는 흰색으로 체세포 돌연변이가 쉽게 일어나 방사선 지표식물로 생물학적인 반응 연구 등에 효과적으로 이용되어 왔다. 본 연구에서는, 자주달개비 BNL 4430을 대상으로 50, 250, 500, 1000 mGy에 해당하는 감마선($^{60}Co$)을 조사한 후 13일차에 있는 샘플을 대상으로 만개한 꽃을 채취하여 RNA를 추출하였다. 추출한 RNA를 바탕으로 Illumina Hi-seq를 이용하여 각 선량에 해당하는 전사체 및 특이발현유전자(Differentially expressed genes, DEGs)를 분석하였다. 전사체는 총 77,326개로, 방사선 비처리구에 비해 2배 이상 상향 발현된 유전자는 50 mGy에서 116개, 250 mGy에서 222개, 500 mGy에서 246개, 1000 mGy에서 308개로 밝혀졌으며, 이 중 각 선량별 특이적으로 반응하는 유전자인 heat shock protein 70 famaily protein, IQ-domain 6, KAR-UP oxidoreductase, zinc transporter 1 precursor를 선발하여 13일차의 RNA 샘플을 대상으로 RT-PCR 및 qRT-PCR을 이용하여 저선량 방사선에 반응하는 유전자를 검정하였다. 검정 결과 DEGs data와 매우 유사한 양상을 보였으며, 선량별로 2.3배에서 최대 96.59배의 높은 발현을 확인하였다. 선발한 유전자는 대부분 세포 내 방어기작과 관련이 되어있는 유전자였으며, 이중 KAR-UP oxidoreductase의 경우 A. thaliana에서 발아와 관련이 있는 유전자로 알려져 있었는데, 이번 연구를 통해 저선량 방사선에 의해서 반응하는 유전자로도 확인이 되었다. 저선량 방사선에 노출된 자주달개비의 유전자 정보를 바탕으로, 저선량의 방사선이 식물체에 미치는 영향과 발현 기작을 연구하는 데에 분자적 수준의 정보를 제공할 수 있게 되었으며, 저선량 방사선의 생물학적 안정성 확보를 위한 감시 보조수단으로 자주달개비가 유용하게 활용될 수 있을 것으로 기대된다.

Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

키워드

참고문헌

  1. Assi NE, Huber DJ, Brecht JK (1997) Irradiation-induced changes in tomato fruit and pericarp firmness, electrolyte efflux, and cell wall enzyme activity as influenced by ripening stage. J Am Soc Hortic Sci 122:100-106
  2. Arabi MIE, Al-Safadi B, Jawhar M, Mir-Ali N (2005) Enhancement of embryogenesis and plant regeneration from barley anther culture by low doses of gamma irradiation. In Vitro Cell Dev Biol Plant 41:762-764 https://doi.org/10.1079/IVP2005699
  3. Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007) The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144:312-323 https://doi.org/10.1104/pp.107.097246
  4. Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperone Hsp104-a molecular machine for protein disaggregation. J Struct Biol 156:139-148
  5. Breiman A (2014) Plant Hsp90 and its co-chaperones. Curr Protein Pept Sci 15:232-244 https://doi.org/10.2174/1389203715666140331115603
  6. Cebulska - Wasilewska A (1992) Tradescantia stamen-hair mutation bioassay on the mutagenicity of radioisotope-contaminated air following the Chernobyl nuclear accident and one year later. Mut Res 270:23-29 https://doi.org/10.1016/0027-5107(92)90097-L
  7. Chiwocha DS, et al. (2009) Karrikins: A new family of plant growth regulators in smoke. Plant Sci 177:252-256 https://doi.org/10.1016/j.plantsci.2009.06.007
  8. Christianson ML (1975) Mitotic crossing-over as an important mechanism of floral sectoring in Tradescantia. Mutat Res 28:389-395 https://doi.org/10.1016/0027-5107(75)90233-X
  9. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed(Striga lutea Lour): Isolation and properties of a potent stimulant. Science 154:1189-1190 https://doi.org/10.1126/science.154.3753.1189
  10. Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ (2004) Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166:325-335 https://doi.org/10.1083/jcb.200401157
  11. Flematti GR, Scaffidi A, Dixon KW, Smith SM, Ghisalberti EL (2011) Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. J Agric Food Chem 59:1195-1198 https://doi.org/10.1021/jf1041728
  12. Gong M, van der Luit AH, Kinght MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular $Ca^{2+}$ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429-437 https://doi.org/10.1104/pp.116.1.429
  13. Humphrey AJ, Beale MH (2006) Strigol: Biogenesis and physiological activity. Phytochemistry 67:636-640 https://doi.org/10.1016/j.phytochem.2005.12.026
  14. Ichikawa S (1971) Somatic mutation rate at low levels of chronic gamma-ray exposures in Tradescantia stamen hairs. Jpn J Genet 46:371-376 https://doi.org/10.1266/jjg.46.371
  15. Ichikawa S (1972) Somatic mutation rate in Tradescantia stamen hairs at low radiation levels: finding of low doubling doses of muations. Jpn J Genet 47:411-415 https://doi.org/10.1266/jjg.47.411
  16. Ichikawa S (1981) In situ monitoring with Tradescantia around Nuclear power plants. Environmental Health Perspectives 37:145-164 https://doi.org/10.1289/ehp.8137145
  17. Ichikawa S, Ishii C (1991) Validity of simplified scoring methods of somatic mutations in Tradescantia Stamen hairs. Envir exp Bot 31:247-252 https://doi.org/10.1016/0098-8472(91)90077-2
  18. International Commission on Radiological Protection (2006) Low-dose extrapolation of radiation-related cancer risk. Publication 99. Elsevier, Amsterdam, the Netherlands p 13
  19. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp 70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO Journal 17(21):6124-6134 https://doi.org/10.1093/emboj/17.21.6124
  20. Keeley SC, Pizzorno M (1986) Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicellulose. Am J Bot 73:1289-1297 https://doi.org/10.2307/2444063
  21. Kim JH, Chung BY, Kim JS, Wi SG (2005) Effects of in planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. J Plant Biol 48:47-56 https://doi.org/10.1007/BF03030564
  22. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2:molecular evolutionary genetics analysis software. Bioinformatics 17:1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
  23. Kwon SH, Lee YL, Chung KH, Oh JH (1981) Mutation frequency of Tradescantia (BNL clone 4430) stamen hairs exposed to low dose of gamma ray in the KAERI $\gamma$-field. J Kor Nuc Soe 13:162-167
  24. Light ME, Daws MI, Van Staden J (2009) Smoke-derived butenolide: Towards understanding its biological effects. S Afr J bot 75:1-7 https://doi.org/10.1016/j.sajb.2008.10.004
  25. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631-677 https://doi.org/10.1146/annurev.ge.22.120188.003215
  26. Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY. et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186-1195 https://doi.org/10.1104/pp.102.018564
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  28. Mashev N, Vassilev G, Ivanov K (1995) A study of N-allyl N-2pyridylthiourea and gamma radiation treatment on growth and quality of peas and wheat. Bulg J Plant Physiol 21:56-63
  29. Mitchel RE (2006) Low doses of radiation are protective in vitro and in vivo: evolutionary origins. Dose Response 4:75-90
  30. Moussa HR (2011) Low dose of gamma irradiation enhanced drought tolerance in soybean. Bulg J Agric Sci 17:63-72
  31. Nagata T, Todoriki S, Hayashi T, Shibata Y, Mori M, Kanegae H, et al (1999) Gamma-radiation induces leaf trichome formation in Arabidopsis. Plant Physiol 120:113-120 https://doi.org/10.1104/pp.120.1.113
  32. National Research Council (2006) BEIR VII: Health risks from exposure to low levels of ionizing radiation. The National Academies Press. Washington D.C. p 2
  33. Nauman CH, Sparrow AH, Schairer LA (1976) Comparative effects of ionizing radiation and two gaseous chemical mutagenes on somatic mutation induction in one mutable and two non-mutable clones of Tradescantia. Mut Res 38:53-70 https://doi.org/10.1016/0165-1161(76)90079-0
  34. Nelson DC, Flematti GR, Riseborough J-A, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light response during germination and seedling development in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:7095-7100 https://doi.org/10.1073/pnas.0911635107
  35. Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107-130 https://doi.org/10.1146/annurev-arplant-042811-105545
  36. Rakwal R, Agrawal GK, Shibato J, Imanaka T, Fukutani S, Tamogami S, et al (2009) Ultra low-dose radiation: stress responses and impacts using rice as a grass model. Int J Mol Sci 10:1215-1225 https://doi.org/10.3390/ijms10031215
  37. Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331-340 https://doi.org/10.1096/fasebj.11.5.9141499
  38. Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Experimental Cell Research 223(1):163-170 https://doi.org/10.1006/excr.1996.0070
  39. Schairer LA, Van't Hof J, Hayes CG, Burton RM, de serres FJ (1978) Exploratory monitoring of air pollutants for mutagenicity activity with the Tradescantia stamen hair system. Environm Health Perspect 27:51-60 https://doi.org/10.1289/ehp.782751
  40. Singh B, Datta PS (2010) Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiat Phys Chem 79:139-143 https://doi.org/10.1016/j.radphyschem.2009.05.025
  41. Sparrow AH, Underbrink AG, Rossi HH (1972) Mutations induced in Tradescantia by small dose of X-rays and neutrons : analysis of dose-response curves. Science 176:916 https://doi.org/10.1126/science.176.4037.916
  42. Stevens JC, Merritt DJ, Flematti GR, Ghisalberti EL, Dixon KW (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plnat Soil 298:113-124 https://doi.org/10.1007/s11104-007-9344-z
  43. Van Staden J, Jager AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot 70:654-659 https://doi.org/10.1016/S0254-6299(15)30206-4
  44. Vandenhove H, Vanhoudt N, Cuypers A, van Hees M, Wannijn J, Horemans N (2010) Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiol Biochem 48:778-786 https://doi.org/10.1016/j.plaphy.2010.06.006
  45. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol 42:579-620 https://doi.org/10.1146/annurev.pp.42.060191.003051
  46. Wang M, Xu Q, Yuan M (2011) Zinc homeostasis is involved in unfolded protein response under salt stress. Plant Signaling & Behavior 6(1):77-79 https://doi.org/10.4161/psb.6.1.14019
  47. Wi SG, Chung BY, Kim JS, Kim JH, Baek MH, Lee JW, et al (2007) Effects of gamma irradiation on morphological changes and biological responses in plants. Micron 38:553-564 https://doi.org/10.1016/j.micron.2006.11.002
  48. Wiendl FM, Wiendl FW, Wiendl JA, Vedovatto A, Arthur V (1995) Increase of onion yield through low dose of gamma irradiation of its seeds. Radiat Phys Chem 46:793-795 https://doi.org/10.1016/0969-806X(95)00263-W
  49. Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic $Ca^{2+}$ signature and OsCaM1-1 nuclear localization mediate downstream signaling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35:1543-1557 https://doi.org/10.1111/j.1365-3040.2012.02508.x