• 제목/요약/키워드: Plant protein

검색결과 3,222건 처리시간 0.032초

Production of the taste-modifying protein, miraculin, in transgenic lettuce

  • Ezura, Hiroshi;Sun, Heyon-Jin
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.126-131
    • /
    • 2005
  • Richadella dulcifica, a native shrub in tropical West Africa, gives red berries that have the unusual property of modifying a sour taste into a sweet taste. The red berries contain a taste-modifying protein named miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. High expression of miraculin was obtained, with accumulation of up to 1% total soluble protein in lettuce leaf. In addition, the miraculin expressed in lettuce possesses a taste-modifying activity.

  • PDF

Induction of apoptosis by protein fraction isolated from the leaves of Mirabilis jalapa L on HeLa and Raji cell-line

  • Ikawati, Zullies;Sudjadi, Sudjadi;Elly, Widyaningsih;Puspitasari, Dyah;Sismindari, Sismindari
    • Advances in Traditional Medicine
    • /
    • 제3권3호
    • /
    • pp.151-156
    • /
    • 2003
  • The leaves of Mirabilis jalapa L contains protein fraction presumed ribosome-inactivating protein (RIP). RIP is a group of protein that has RNA N-glycosidase activity that is capable to inhibit protein synthesis. Protein fraction of the plant was shown to be cytotoxic on HeLa cell-line, however, the mechanism by which the protein kill the cells is not identified yet, whether trough apoptosis, necrosis, or other mechanism. This research aim to study the mechanism of cell death caused by the protein fraction isolated from the leaves of this plant on HeLa and Raji cell-line, as representative of different kind of cancer cells. Results showed that protein fraction isolated from the leaves of Mirabilis jalapa L was more cytotoxic to HeLa cell-line (LC50: 0.65 mg/ml) than to Raji cell-line (1.815 mg/ml) on 48 hours incubation time. Moreover, it was demonstrated that the death of HeLa cells caused by the protein fraction was due to induction of apoptosis, while on Raji cell-line was due to non-apoptosis way, presumably via necrosis.

Methods for improving meat protein digestibility in older adults

  • Seung Yun Lee;Ji Hyeop Kang;Da Young Lee;Jae Won Jeong;Jae Hyeon Kim;Sung Sil Moon;Sun Jin Hur
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.32-56
    • /
    • 2023
  • This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.

Anticancer Activity of Sageretia theezans in Human Colorectal Cancer Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.108-108
    • /
    • 2018
  • In this study, we evaluated the anti-cancer effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in human colorectal cancer cells. ST-L and ST-B significantly inhibited the proliferation of human colorectal cancer cells, SW480. ST-L and ST-B decreased cyclin D1 protein level through the induction of cyclin D1 proteasomal degradation via $GSK3{\beta}$-dependent threonine-286 phosphorylation of cyclin D1. In addition, ST-L and ST-B increased HO-1 protein through p38, ROS and $GSK3{\beta}$-dependent Nrf2 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-cancer drug to treat human colorectal cancer.

  • PDF

NPR1 is Instrumental in Priming for the Enhanced flg22-induced MPK3 and MPK6 Activation

  • Yi, So Young;Min, Sung Ran;Kwon, Suk-Yoon
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.192-194
    • /
    • 2015
  • Pathogen-associated molecular patterns (PAMPs) activate mitogen-activated protein kinases (MAPKs), essential components of plant defense signaling. Salicylic acid (SA) is also central to plant resistance responses, but its specific role in regulation of MAPK activation is not completely defined. We have investigated the role of SA in PAMP-triggered MAPKs pathways in Arabidopsis SA-related mutants, specifically in the flg22-triggered activation of MPK3 and MPK6. cim6, sid2, and npr1 mutants exhibited wild-type-like flg22-triggered MAPKs activation, suggesting that impairment of SA signaling has no effect on the flg22-triggered MAPKs activation. Pretreatment with low concentrations of SA enhanced flg22-induced MPK3 and MPK6 activation in all seedlings except npr1, indicating that NPR1 is involved in SA-mediated priming that enhanced flg22-induced MAPKs activation.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Changes in Protein Contents and Activities of Proteolytic Enzymes in Medicago sativa During Regrowth

  • Kim, Tae-Hwan
    • Journal of Plant Biology
    • /
    • 제37권3호
    • /
    • pp.357-363
    • /
    • 1994
  • An expreiment with non-nodulating alfalfa (Medicago sativa L.) plants was designed to investigate the changes in protein contents and the activities of proteolytic enzymes during a regrowth period of 24 d. Shoot removal caused a depression of root growth and significantly reduced protein contents in roots. An initial decline of root proteins for the first 10 d was followed by a rapid recovery from d 11 to 24. The major increase of regrowing shoot weight occurred also from d 11. The activities of aminopeptidase and endoprotease slightly decreased in regrowing leaves, while protein contents remains stable after shoot removal. Roots exhibited source behaviour with a rapid increase of endoprotease activities for the first 10 d of regrowth; about a 370% increase over the initial level was observed. Increase in endoprotease activity in roots coincided with the time of protein remobilization after shoot removal, indicating the important role of endoproteases in protein degradation.

  • PDF

대두 유식물에서 Protein Kinase C의 부분 정제 (Partial Purification of Protein Kinase C in Glycine max)

  • 최윤희
    • Journal of Plant Biology
    • /
    • 제36권2호
    • /
    • pp.171-176
    • /
    • 1993
  • Protein kinase C, a protein related in PI cascade, was partially purified from the cytosol protein of etiolated plants of Glycine max by DEAE-52 cellulose chromatography and phenylsepharose chromatography. When the DEAE column was eluted with 0-0.8 M linear gradient KCl, tow fractions were found that increased the phosphorylation of histon H1 about five and nine-fold in the presence of 5 $\mu\textrm{g}$/mL phosphatidylserine and 0.5 $\mu\textrm{g}$/mL diolein, respectively. These fractions were used as DEAE pool. The reaction eluted with relatively high concentration of KCl was loaded on phyenylsepharose column with 5 mM CaCl2 and eluted with 1 mM EGTA. A fraction contained the protein kinase C, which increased the phosphorylation of the histon H1 was fractionated. To determine the molecular weight of PKC, the fraction eluted from phenylsepharose column was analyzed by 5~15% polyacrylamide gel electrophoresis after concentrated with the Amicon membrane (YM10). That revealed two bands corresponding to 60 and 65 kGy by silver staining of the gel, respectively.

  • PDF