• Title/Summary/Keyword: Plant pigments

Search Result 131, Processing Time 0.023 seconds

Chilling Tolerance of Photosynthesis in Plants is Dependent on the Capacity to Enhance the Levels of the Xanthophyll Cycle Pigments in Response to Cold Stress

  • Kim, Hyun-Ju;Kang, In-Soon;Lee, Chin-Bum;Lee, Choon-Hwan;Cho, Sung-Ho;Moon, Byoung-Yong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Plants possess the ability to dissipate the excitation energy for the protection of photosynthetic apparatus from absorbed excess light. Heat dissipation is regulated by xanthophyll cycle in thylakoid membranes of chloroplasts. We investigated the mechanistic aspects of xanthophyll cycle-dependent photoprotection against low-temperature photoinhibition in plants. Using barley and rice as chilling-resistant species and sensitive ones, respectively, chilling-induced chlorophyll fluorescence quenching, composition of xanthophyll cycle pigments and mRNA expression of the zeaxanthin epoxidase were examined. Chilled barley plants exhibited little changes in chlorophyll fluorescence quenching either of photochemical or non-photochemical nature and in the photosynthetic electron transport, indicating low reduction state of PS II primary electron acceptor. In contrast to the barley, chilled rice showed a marked decline in those parameters mentioned above, indicating the increased reduction state of PS II primary electron acceptor. In addition, barley plants were shown to have a higher capacity to elevate the pool size of xanthophyll cycle pigments in response to cold stress compared to rice plants. Such species-dependent regulation of xanthophyll cycle activity was correlated with the gene expression level of cold-induced zeaxanthin epoxidase. Chilled rice plants depressed the gene expression of zeaxanthin epoxidase, whereas barley increased its expression in response to cold stress. We suggest that chilling-induced alterations in the pool size of xanthophyll cycle pigments related to its capacity would play an important role in regulating plant's sensitivity to chilling stress.

  • PDF

A Study on the Model of Light Interception and Absorption in Plant Canopies (植物의 樹冠에 있어서 光의 遮斷과 吸收 Model 에 關한 硏究)

  • Chang, Nam-Kee;Kyung-Oh Kwon
    • The Korean Journal of Ecology
    • /
    • v.8 no.2
    • /
    • pp.61-68
    • /
    • 1985
  • The modeling of interception and absorption of light was studied in plant canopies at Mt. Kwanak. Followering results were obtained. Light intensity passing through the stacked leaves is attenuated exponentially. This phenomenon seems to be more clearly applied to the plant canopies, if they have large cumulative leaf area and are matured densely. Light interception and absorption are influenced by leaf thickness, shape pigments, and leaf area, and they have great effect on the maturation of canopies. It was confirmed that the light penetrating through the stratified canopies is decreased exponentially in dual pattern. The cumulative leaf area of a definite space in a certain plant canopy is the same as the growth of leaf area of the canopy at that time. A hypothetical model for calculating the light absorption in plant canopies, was established on the bases of phenomena that incident light is captured at the maximum level and light inerception effect is minimized by leaves.

  • PDF

Quantitative Determination and Stability of Curcuminoid Pigments from Turmeric (Curcuma longa L.) Root (강황 (Curcuma longa L.) 색소의 정량 및 안정성)

  • Kim Kwan-Su;Choung Myoung-Gun;Park Si-Hyung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.211-215
    • /
    • 2005
  • Three curcuminoids [curcumin (CUR), demethoxycurcumin(DEM), bisdemethoxycurcu in (BIS)] are major yellow pigments in turmleric (Curcuma longa L.) root. Contents of curcuminoids in turmeric roots collected from 6 locations were analyzed using, high performance liquid chromatography (HPLC) equipped with reversed-phase column, an UV-Vis detector at 420nm, and eluted with a mixture of acetonitrile: $0.1\%$ acetic acid in water (50 : 50, v/v) as mobile phase. The stability of curcuminoid pigments in $80\%$ methanol extract solution were investigated during storage in a freezer at $-20^{\circ}C$, room temperature in the dark, and light condition. Calibration curves for the determination of curcuminoids were made with significant linearity $(r^2=0.999**)$. Average content of total curcuminoids was 171.5 mg/g, with 91.6 mg/g of CUR, 56.9 mg/g of DEM, and 23.0 mg/g of BIS. Amount of curcuminoids during storage in a freezer was almost not changed while those in room temperature wert reduced and rapid degradation appeared after 60 days. Within 90 days, about $50\%$ curcuminoid decreased in the dark and about $70\%$ in the light condition, indicating the decomposition of curcuminoid pigments followed under light and heat.

Effects of Sulfur Dioxide on Pigments, Frotein Content and Photosystem II Activity of Barley and Corn Leaves (보리와 옥수수 잎의 색소, 단백질 함량 및 관계II 활성에 미치는 ${SO}^2$의 영향)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.135-151
    • /
    • 1982
  • This investigation was carried out to clarify the changes of pigments and soluble protein, and photosystem II activity in the leaves of barley (${SO}_2$-sensitive) and corn (${SO}_2$-resistant) seedlings induced by the ${SO}_2$ fumigation (10, 50ppm). The pH changes of the leaf extract, the content of sulfite and sulfate, the activities of catalase, peroxidase, and polyphenoloxidase were compared in the leaves of barley and corn seedlings induced by ${SO}_2$ fumigation. The results are summarized as follows: An appreciable effect of pH change of leaf extract by ${SO}_2$ fumigation was observed in barley leaves (pH 6.10 to 5.18), but only a small change occurred in corn leaves (pH 5.66 to 5.50). The same pattern of pH changes was recorded when the solution of 0.2N HCl was added to leaf extract, providing lower buffering capacity of the barley leaves than corn leaves. After 2 hours of exposure to 10 ppm ${SO}_2$, the contents of ${SO}^{2-}_3$ and ${SO}^{2-}_4$ were increased in barley leaves, while only ${SO}^{2-}_4$ increased in corn leaves. After fumigation with 10ppm ${SO}_2$ for 2 hours, barley leaves showed significant decreases in activities of catalase, to 17% peroxidase, to 58%, and polyphenoloxidase, to 88%. Corn leaves showed increases in activities of peroxidase, to 136%, and polyphenoloxidase, to 128%. Absorption spectra of pigments obtained from ${SO}_2$-fumigated leaves were gradually decreased with the fumigation time increases, but the decrease was more significant in barley leaves. Fumigation with 50ppm ${SO}_2$ for 2 hours induced the greatest decomposition in carotenoid, followed by chlorophyll a and then chlorophyll b in barley leaves. The ratio of chlorophyll a/b was decreased from 4.1 to 3.6 in barley leaves, but in corn leaves it was maintained almost a constant level(4.9-4.8). The rate of decomposition of chlorophyll and carotenoid in corn leaves was very slow than those in the barley leaves. Fumigation with 50 ppm ${SO}_2$ for 2 hous, decreased the protein content of barley leaves to 59%, and that of corn leaves to 89%, and the extent of decrease in protein content was greater than that of pigments in barley and corn leaves. The rate of DCIP9dichlorophenol indophenol) photoreduction in ${SO}_2$-fumigated leaves was decreased to 18 and 67% in barley and corn leaves, respectively. However, DCIP photoreduction was considerably recovered about 32 and 92% with the addition of DPC(diphenylcarbazide) as an exogenous electron donor in barley and corn leaves, respectively.

  • PDF

Stability and Sensory Evaluation of Naphthoquinone Pigments from the Roots of Lithospermum erythrorhizon (자근(紫根)으로부터 분리한 Naphthoquinone류 색소의 pH 안정성 및 관능검사)

  • Chung, Mi-Sook;Lee, Mie-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.152-156
    • /
    • 1994
  • The purplish red pigment from the roots of Lithospermum erythrorhizon, a Korean edible wild plant, has been investigated concerning it's value as a natural colorant for Korean traditional foods. An attempt was made to isolate pigments and define their characteristics. Two compounds of isobutylshikonin and acetylshikonin were identified by melting point determination and spectra of UV, IR, and $^{1}H-NMR$. To examine the utility of these naphthoquinone pigments for foods, the effect of various pH values on stability were determined over a period of storage. Buffered solutions of acetylshikonin and isobutylshikonin at pH 3 and 5 showed stable purplish red. The absorption maxima if acetylshikonin and isobutylshikonin over the range of pH 3 to 7 were 518 nm and 520 nm, respectively. A bathochromic shift to 588 nm at pH 10 was observed on these two naphthoquinone pigments. Sensory evaluation was performed with acetylshikonin and isobutylshikonin of identical absorbance. These two pigments revealed purplish red color in Munsell system.

  • PDF

Ozone Impacts on Soluble Carbohydrates, Antioxidant Activity and Macro-element Concentrations in Rice Seedling

  • Sung Jwa-Kyung;Park So-Hyeon;Lee Su-Yeon;Lee Ju-Young;Jang Byoung-Choon;Hwang Seon-Woong;Kim Tae-Wan;Song Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.142-147
    • /
    • 2006
  • The present study describes carbohydrate metabolism, macro-element utilization and antioxidant defenses in response to an ozone dose (100 ppb, 8d) in two rice varieties. Tolerant (cv. Jinpumbyeo) and sensitive (cv. Chucheongbyeo) varieties of rice were grown in growth chamber for 30 days after sowing. Concentrations of chloroplast pigments and non-structural carbohydrates as well as activity of antioxidant enzymes were determined to evaluate the resistance against ozone stress. Ozone caused the decrease in chlorophyll a and carotenoid contents, and also resulted in faster decomposition of non-structural carbohydrate in leaf blade and leaf sheath. The contents of nitrogen and potassium in leaves were visibly decreased in cv. Chucheongbyeo with an increase in ozone exposure, but not in cv. Jinpumbyeo. Enzymatic antioxidants against ROS in both varieties responded in the order of POD, SOD and CAT, and their capacity was stronger in cv. Jinpumbyeo.

Effects of different UV-8 levels on the growth, photosynthesis and pigments in cucumber(Cucumis sativus L.) (UV-B 강도 변화가 오이(Cucumis sativus L.)의 생장, 광합성 및 색소에 미치는 영향)

  • Kim, Hak-Yoon;Lee, In-Jung;Shin, Dong-Hyun;Kim, Kil-Ung
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • To investigate the effects of different UV-B levels on plant growth, cucumber plants were subjected to three levels of biologically effective ultraviolet-B(UV--$B^{BE}$ radiation [daily dose : 0.03(No UV-B), 6.40(Low UV-B) and 11.30 (High UV-B) kJ $m^{-2}$, UV--$B^{BE}$] in the growth chambers for 3 weeks during the early growth period. High and low levels of UV-B irradiation drastically decreased both dry weight and leaf area, but increased specific leaf weight of cucumber. Plants subjected to UV-B resulted in 30% and 20% reduction of photosynthesis rate by high and low UV-B, respectively. However, respiration rate was not affected by the UV-B. With increasing UV-B intensity, total chlorophyll contents were decreased linearly, while the contents of flavonoid were increased linearly. These results suggest that the present levels of UV-B may affect the growth of cucumber plant compared with a UV-B-free condition. It is likely that the growth of cucumber will be affected by enhanced UV-B due to ozone depletion in the near future.

  • PDF