• Title/Summary/Keyword: Plant pathogenic bacteria

Search Result 218, Processing Time 0.028 seconds

Studies on the Plant Plant Pathogenic Corynebacteria; The Synthesis of B Group Vitamins by Plant Pathogenic Bacteria (Corynebacterium 속 식물병원세균에 관한 연구 -식물병원세균의 Vitamin B군의 합성 -)

  • Kim Jong-wan;Mukoo Hideo
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.155-161
    • /
    • 1975
  • The results of studies on the synthesis of B group vitamins by plant pathogenic bacteria indicate that most bacteria utilize thiamine, nicotinic acid, biotin and P-Aminobenzoic acid as growth factors. Riboflavin (vitamin $B_2$) was produced by most bacterial genera including the Corynebacteria but with the exception of C. rathay and C.fasciant. The results suggest that the ability to produce riboflavin is not a generic characteristic of Corynebacterium, and that the accuracy of the ultra-violet light method (one of the diagnostic tests for potato bacterial ring rot disease caused by Corynebacterium sepedonicum) must he reconsidered.

  • PDF

Studies on the Plant Pathogenic Corynebacteria(III) -The amino acid composition of some plant pathogenic bacteria- (Corynebacterium 속 식물병원세균에 관한 연구(III) - 식물병원세균의 아미노산 조성)

  • Kim Jong-wan;Mukoo Hideo
    • Korean journal of applied entomology
    • /
    • v.14 no.4 s.25
    • /
    • pp.209-213
    • /
    • 1975
  • This paper is a report of studies to determine the amino acid composition of Plant Pathogenic Corynebacteria and to assess whether these characteristics can be correlated with the taxonomic position of these organisms. The results indicated that plant pathogenic Corynebacteria contained on average less cystein, trypthophane, histidine, phenylalanine, isoleucin and total protein than did the other genera of bacteria. However, in general, the quantities of both cell protein and amino acids contained in bacterial cells were characteristics of the species or an individual strain of the organism and were not related to its classification.

  • PDF

Various Pathogenic Pseudomonas Strains that Cause Brown Blotch Disease in Cultivated Mushrooms

  • Mu, Lin-Lin;Yun, Yeong-Bae;Park, Soo-Jin;Cha, Jae-Soon;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.349-354
    • /
    • 2015
  • Brown blotch disease in cultivated mushrooms is caused by Pseudomonas tolaasii, which secretes a lipodepsipeptide, tolaasin. Tolaasin is a pore-forming toxin in the cell membranes, thus destroying the fruiting body structure of mushroom. In this study, we isolated pathogenic bacteria from mushrooms that had symptoms of brown blotch disease. In order to identify these bacteria, their 16S rRNA genes were sequenced and analyzed. Pathogenic bacteria identified as Pseudomonas species were thirty five and classified into five subgroups: P1 to P5. Each subgroup showed different metabolic profile measured by API 20NE kit. Fifty percent of the bacteria were identified as P. tolaasii (P1 subgroup). All five subgroups caused the formation of brown blotches on mushroom tissues and the optimum temperature was 25oC, indicating that they may be able to secrete causal factors, such as tolaasin and similar peptide toxins. These results show that there are at least five different pathogenic Pseudomonas species as blotch-causing bacteria and, therefore, strains from the P2 to P5 subgroups should be also considered and studied as pathogens in order to improve the quality and yield of mushroom production.

The antimicrobial compound of Rhus verniciflua barks against fish pathogenic gram-negative bacteria, Edwardsiella tarda and Vibrio anguillarum (어류병원성 그람음성세균 Edwardsiella tarda와 Vibrio anguillarum에 대한 칠피의 항균활성물질)

  • Kang, So-Young
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • To obtain antimicrobial compounds against fish pathogenic bacteria from natural products, 80% methanolic extracts from 14 species of medicinal plant were screened for antimicrobial activity against fish pathogenic bacteria, Edwardsiella tarda and Vibrio anguillarum. Among them, Glycyrrhiza glabra, Rhus vemiciflua and Sanguisorba officinalis were effective for growth inhibition of Gram-negative bacteria, both E. tarda YSF and V. anguillarum YSR. Through the activity-guided isolation for R. verniciflua extract that exhibited the highest antimicrobial activity among three extracts, one antimicrobial compound (1) was isolated and identified as methyl-3,4,5-trihydroxybenzoate, or methyl gallate. This compound significantly inhibited the growth of tested strains of both E. tarda and V. anguillarum exhibiting MIC of 1 mg/ml for each strain.

Inhibitory Effects of Artemisia capillaris Extract on the Pathogenic Bacteria in Mice (인진쑥 추출물의 병원성 세균에 대한 생체내 증식 억제 효과)

  • Kim, Hong-Tae;Kim, Ju-Wan;Lim, Mee-Kyoung;Yeo, Sang-Geon;Jang, Kwang-Ho;Oh, Tae-Ho;Lee, Keun-Woo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.125-129
    • /
    • 2007
  • Artemisia capillaris THUNB is a perennial herb that belongs to the family Compositae spp and the most common plant among the various herbal folk remedies used in treatment of abdominal pain, hepatitis, chronic liver disease, jaundice and coughing in Korea. This experiment was conducted to investigate the inhibitory effects of orally administrated Artemisia capillaris extracts on the pathogenic bacteria in 200 ICR mice. The experimental groups showed inhibitory effects on the bacteria in $1{\sim}3$ days after inoculation. After 21 days of inoculation, no viable bacterial cells appeared in the feces of both experimental groups while they did appear in the control group. The results of these studies indicate Artemisia capillaris extract exhibited excellent antimicrobial and inhibitory effects on the food poisoning pathogenic bacteria; S. enteritidis, E. coli O157:H7, L. monocytogenes and S. aureus.

Population Density Changes of Bacteria Causing Soybean Sprout Rot on Soybean Pods (콩 꼬투리에서 서식하는 세균 및 콩나물 부패균의 밀도 변화)

  • 이은정;한광섭;심명용;최재을
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.41-45
    • /
    • 1999
  • Bacterial population densities on soybean pods from Chungnam province ranges 105~106 CFU/$\textrm{cm}^2$, whereas those of bacteria causing sprout rot ranged 0~103 CFU/$\textrm{cm}^2$. Erwinia chrysanthemi, Xanthomonas campestris pv. glycines, Staphylococcus sp., and Micrococcus sp. were identified as pathogenic bacteria causing soybean sprout rot. The population density of X. campestris pv. glycines was higher than those of other bacteria.

  • PDF

Antibacterial activity of supernatant obtained from Weissella koreensis and Lactobacillus sakei on the growth of pathogenic bacteria

  • Im, Hana;Moon, Joon-Kwan;Kim, Woan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.415-423
    • /
    • 2016
  • This study was carried out to obtain basic data for the industrial use of Weissella koreensis and Lactobacillus sakei. The antibacterial activity of supernatants obtained from W. koreensis and L. sakei were tested against pathogenic bacteria such as Escherichia coli KCCM 11234, Salmonella enteritidis KCCM 3313, Salmonella enteritidis KCCM 12021, Salmonella typhimurium KCCM 40253, and Salmonella typhimurium KCCM 15. The supernatant of L. sakei showed antibacterial activity against E. coli KCCM 11234, S. enteritidis KCCM 12021, and S. typhimurium KCCM 15, while the supernatant of W. koreensis showed antibacterial activity against E. coli KCCM 11234 and S. enteritidis KCCM 12021. The effect of pH changes and heat treatment on antibacterial activity of the supernatants was examined using the sensitive pathogenic bacteria (E. coli KCCM 11234, S. enteritidis KCCM 12021 and S. typhimurium KCCM 15). Antibacterial activity against sensitive pathogenic bacteria was maintained under heat treatment at all temperatures, but there was no antibacterial activity associated with pH modification. Furthermore, it was confirmed that the antibacterial activity of the supernatants obtained from W. koreensis and L. sakei was a result of organic acids including, lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, and formic acids. Therefore, the present study showed that the organic acids produced by L. sakei and W. koreensis exhibited a strong antibacterial activity against pathogenic bacteria. Moreover, in the food industry, these organic acids have the potential to inhibit the growth of pathogenic bacteria and improve the quality of stored food.

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Effect of antibacterial effects of myrrh, rhatany, chamomomilla against to oral microorganisms (몰약, 라타니아, 카모밀레 등의 구강 내 병원균에 대한 항균작용)

  • Baek, Han-Seung;Kang, Soo-Kyung;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • Even though there exist a lot of study about antibacterial effects and reactions of extracted materials from plant, few study exist about oral pathogenic bacteria. Therefore we tried to recognize about the suppression effect to the periodontal pathogenic bacteria and halitosis, when add some kinds of plant extracted materials, myrrh, rhatany, chamomolilla to saliva. We used Crude drug : Myrrh tincture (100mg/ml), Ratanhia tincture (100mg/ml), Chamomile tincture(100mg/ml). We inspected about the cariogenic bateriae, S. mutans GS5 and S. sobrinus 6715, periodontal pathogenic bacteria, P. gingivalis 2561, P. intermedia ATCC 25611, Candida albicans ATCC 18804, and E. feacalis ATCC 4083, then the result follow. The plant extracted material, myrrh, rhatany, chamomomilla, which have convergence effect, bacteriocidal effect and anti-inflammation effect, show an antibacterial effect and reaction to the oral pathogenic bacteria. And with treating rhatany that have the most strong antibacterial effect, through transmission electron microscopy we could see a severe morphologic change of bacteria. This means with the plant extracted material, we can suppress the oral harmful bacteria and prevent periodontal diseases, caries, halitosis and oral inflammations. And within the future studies for the improvement of oral hygiene, our result might be a clinical evidence.