Plants are very crucial for life on Earth. There is a wide variety of plant species available, and the number is increasing every year. Species knowledge is a necessity of various groups of society like foresters, farmers, environmentalists, educators for different work areas. This makes species identification an interdisciplinary interest. This, however, requires expert knowledge and becomes a tedious and challenging task for the non-experts who have very little or no knowledge of the typical botanical terms. However, the advancements in the fields of machine learning and computer vision can help make this task comparatively easier. There is still not a system so developed that can identify all the plant species, but some efforts have been made. In this study, we also have made such an attempt. Plant identification usually involves four steps, i.e. image acquisition, pre-processing, feature extraction, and classification. In this study, images from Swedish leaf dataset have been used, which contains 1,125 images of 15 different species. This is followed by pre-processing using Gaussian filtering mechanism and then texture and color features have been extracted. Finally, classification has been done using Multiclass-support vector machine, which achieved accuracy of nearly 93.26%, which we aim to enhance further.
The growth charateristics and karyotypes of Aster spathulifolius collected from 5 sites including coastal and island region on the Korean peninsula, were analysed. Several morphological characteristics of the plants such as leaf length, leaf width, top internode, medium internode, spike branching, flower diameter, number of petal, leaf color, leaf form, stem and leaf hair, viscosity, and serration of the plants were distinctly different depending on the native region from which they were collected. Karyotypic analysis showed that the chromosome number was all diploid (2n=18), with one pair of submetacentric satellite chromosomes. The chromosome composition included 7 pairs of metacentric chromosomes and 2 pairs of submetacentric chromosomes in all plants. However, chromosome order and the ranges of the chromosome lengths were a little different from plant to plant according to their native growing regions. The plants from Geoje-Do especially showed large differences in the chromosome lengths between the longest and the shortest compared to the plants from other places. This results provide important data to support the classification of the species into several sub-species.
The objectives of this study, an analysis of fruit and leaf morphological characteristics among the five Zizyphus cultivars could be used for the investigation of cultivars classification and could provide information to make out the UPOV TG(Test Guidelines). ANOVA tests showed that there were statistically significant differences in all fruit and leaf morphological characteristics among the five Zizyphus cultivars at 1% level. But, for kernel characteristics, differences were statistically non-significant among the cultivars. Approximately, the Wolchul and Boeun cultivars showed larger and smaller values in overall characteristics and cultivars, respectively. The results of principal component analysis(PCA) for the fruit and leaf morphological characteristics showed that the first for principal components(PC's) explained about 65.3% of the total variation. The first PC was correlated with those characteristics that were mainly related to the terminal leaf length(TLL), leaf length(LL), fruit length(FL), terminal leaf width(TLW), and leaf petiole length(LPL). The second and third PC was mainly correlated with the terminal leaf morphological index(TLMI). Therefore, these characteristics were important to analysis of the fruit and leaf morphological characteristics and classification among the five Zizyphus cultivars. Cluster analysis using UPGMA method based on principal components showed that five Zizyphus cultivars could be clustered into two groups. Group I comprises Mudung, Wolchul, and Bokjo and Geumsung cultivars, Group II is Boeun cultivar. These results well similar to that of principal component analysis.
To obtain basic information on the breeding of burley tobacco, classification of 41 varieties was carried out by using the cluster analysis of correlation coefficients and taxonomic distance based on twenty-one agromonic characters. Eight characters, such as days to flowering, length of flower axis, internode length, leaf length, yield, leaf angle to stem, vein angle to midrib and plant height, were useful in monothetic classification. Forty-one varieties were classified into four groups (I, II, III and IV) with weighted variable group method (WVGM ) and weighted jai. group method(WPGM), whereas the results classification of 33 varieties among them by WVGM were coincident with the results by WPGM. As for the characteristics of each group, group I related to late maturity, tall height and high yield, group II related to intermediate maturity, tall height and low yield, group 19 related to early maturity, intermediate height and low yield, and group W related to early maturity, short height and intermediate yield.
The classification of plant diseases by images captured by a camera sensor has been studied over past decades. A method that has gained much interest is to use image segmentation, from which statistical features are derived and analyzed by machine learning. Recently, deep learning has been adopted in this area. However, image segmentation is still a difficult task to achieve stable performance due to a variety of environmental variations. The end-to-end learning in neural network has a demerit that train images may be different from real images acquired in outdoor fields. To solve these problems, we propose superpixel-based disease classification method using end-to-end CNN (convolutional neural network) learning. Based on experiments performed on PlantVillage apple images, the classification accuracy is 98.29% and 92.43% for full-image and superpixel. As well, the multivariate F1-score is (0.98, 0.93). Therefore we validate that the method of using superpixel is comparable to that of full-image.
A study on the species description, enumeration and interspecific relationships of genus Filipendula was undertaken for four Korean and two Japanese species. The use of scanning electron miroscope(SEM) has made possible a detailed study of foliar trichomes, pollen grains and fruit surface features. A new method for the preparation of SEM samples was developed in this study. Filipendula glaberrima, F. formosa, and F. korean were reliable endemic species. Among them, F. glaberrima shares many characteristics with F. formosa. F. gloaberrima can be divided into tow types based on leaf, seed, flower and pollen characters. Type I is characterized by ciliated fruits, many branched vascular bundles on the petal, dense trichomes on the leaf vein of abaxial surface, and many foveolate pollen surface. Type II possesses glabrous fruits, a few vascular bundles on the petal, rare trichomes on the leaf vein and a few foveolate pollen surface. The significant taxonomic characteristics in the classification of genus Filipendula are their lengths of fruit stalks, the densities of marginal trichomes of fruits, and textures of stipules.
According to fast change of the environment, the structured study of the ecosystem by analyzing the plant leaves are needed. Expecially, the methodology that searches and classifies the leaves from captured from the smart device have received numerous concerns in the field of computer science and ecology. In this paper, we propose a plant leaf classification technique using shape descriptor by combining Scale Invarinat Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) from the image segmented from the background via Graphcut algorithm. The shape descriptor is coded in the field of Locality-constrained Linear Coding to optimize the meaningful features from a high degree of freedom. It is connected to Support Vector Machines (SVM) for efficient classification. The experimental results show that our proposed approach is very efficient to classify the leaves which have similar color, and shape.
Kim, Kwang-Soo;S.Elwynn Taylor;Mark L.Gleason;Kenneth J.Koehler
Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
/
2001.06a
/
pp.93-96
/
2001
Estimation of leaf wetness duration (LWD) facilitates assessment of the likelihood of outbreaks of many crop diseases. Models that estimate LWD may be more convenient and grower-friendly than measuring it with wetness sensors. Empirical models utilizing statistical procedures such as CART (Classification and Regression Tree; Gleason et al., 1994) have estimated LWD with accuracy comparable to that of electronic sensors.(omitted)
Twenty two varieties of pecan including wild types were classified based on 6 characters measured by principal component analysis score distance. The results are summarized as fellow. Twenty two varieties were classified into 5 groups based in PCA score distance. Five groups were distinctly characterized by many morphological characters. Total variation could be explained by 51%, 95%, 99% with first, third and fifth principal components respectively. Varimax rotation of the factor loading of the first factors indicated that the first component was highly loaded with leaf characters, the second component with fruit characters, but fruit length was negative loaded. The second, the third and the fourths groups of cultivars had very close genetic parentage similarity.
1. Comparative studies, the number, form and pattern of ramification, on the petiole stele types of 3 orders, 11 families, 41 genera and 104 species of ferns found in Korea were carried out. 2. The number, form and pattern of the ramified steles were found to be different according to the taxa studied. 3. The stele types of petiole may be classified as unibranch, bibranch, tribranch, and polybranch. The species belonging to each stele type were found to have similar embyrological characteristics among them. Therefore, it might be reasonable to assume that the stele type can be used as a basis for classifing family lines. 4. The number of ramified steles in the petiole were found to be in general agreement with that of the leaf traces, though a few exceptional cases were found. 5. It is well known that there is a large degree of disgreement among the taxanomists on the classification of ferns. The classification of ferns by means of petiole stele types may ease this difficulty in certain extent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.