• Title/Summary/Keyword: Plant design

Search Result 3,851, Processing Time 0.041 seconds

Exchange of Plant P&ID Data Based on ISO 15926 Using iRINGTools (iRINGTools을 활용한 ISO 15926 기반 플랜트 P&ID 데이터의 교환)

  • Jeon, Youngjun;Byon, Su-Jin;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.200-210
    • /
    • 2013
  • It has become important to manage plant data effectively and to share these data among different organizations that are located in different places and participate in a variety of lifecycle phases. ISO 15926 is an international standard for integration of lifecycle data for process plants including oil and gas facilities. This standard consists of several parts providing a generic data model, reference data, and implementation methods. iRINGTools is a tool developed for the exchange of plant design data. This tool supports the implementation methods specified in ISO 15926. In this paper, the exchange of plant design data using iRINGTools is investigated. For this, sample P&ID data was modeled and data exchange experiment was performed. From the experiment, a data exchange procedure based on ISO 15926 is established and design data types that can be practically exchanged using ISO 15926 were identified.

Conceptual Design of 100 MWe Oxy-coal Power Plant-Youngdong Project (100 MWe 순산소 석탄연소 발전시스템의 개념설계-영동 프로젝트)

  • Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.30-45
    • /
    • 2012
  • An existing unit of power plant is considered to refurbish it for possible application of carbon capture and storage(CCS). Conceptual design of the plant includes basic considerations on the national and international situation of energy use, environmental concerns, required budget, and time schedule as well as the engineering concept of the plant. While major equipment of the recently upgraded power plant is going to be reused, a new boiler for air-oxy fired dual mode operation is to be designed. Cryogenic air separation unit is considered for optimized capacity, and combustion system accommodates flue gas recirculation with multiple cleaning and humidity removal units. The flue gas is purified for carbon dioxide separation and treatment. This paper presents the background of the project, participants, and industrial background. Proposed concept of the plant operation is discussed for the possible considerations on the engineering designs.

Genetic Programming Based Plant/Controller Simultaneous Optimization Methodology (Genetic Programming 기반 플랜트/제어기 동시 최적화 방법)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2069-2074
    • /
    • 2016
  • This paper presents a methodology based on evolutionary optimization for simultaneously optimizing design parameters of controller and components of plant. Genetic programming(GP) based bond graph model generation is adopted to open-ended search for the plant. Also GP is applied to represent the controller with a unified method. The formulations of simultaneous plant-controller design optimization problem and the description of solution techniques based on bond graph are derived. A feasible solutions for a plant/controller design using the simultaneous optimization methodology is illustrated.

Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant (복합화력 발전플랜트의 근사 최적 열설계 해석)

  • Jeon, Y.J.;Shin, H.T.;Lee, B.R.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

Improvement of 3D Design Process in the Combined Cycle Power Plant Using Business Process Reengineering (복합화력 발전플랜트에서 업무재설계기법을 이용한 3차원설계의 개선방안)

  • Choi, Hong-Yeol;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.3
    • /
    • pp.55-63
    • /
    • 2012
  • This study aims to suggest the improved business process by analyzing the current design process on work flow of the 3D design of power plant, drawing a problems and setting the improving direction through the integration method of the business process reengineering(BPR). In order to realize the improved business process, the integrated design performance system focused on the 3D design was established and accordingly the study analyzed cases of project performances through the integration system and drew the improved effects quantitatively. In the result of the project performance applied with the 3D design integration system, it showed 20.4% design cost saving effect for appropriate rated cost and the integration of design information from each design parts, sub contracters and vendors reduced overlapped works and improved the consistency of repeated design alteration.

  • PDF

LED array design for optimal combination of plant grown (식물재배를 위한 최적LED 배열조합설계)

  • Lee, Sungwon;Park, Sekwang
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.123-126
    • /
    • 2014
  • This paper is suitable for household plant factory by design and using both energy-saving LED and solar technology. Conventional household plant factory only depending on natural sunlight is sensitive for the change of external environment. Another a big problem of conventional common household plant factory is large power consumption. Recently interest in wellbeing food such as chemical-free is increased abruptly. To solve these two problems, this paper describes hybrid type of household plant. In particular, reducing the power photosynthesis photon flux density (PPFD) is kept uniform to enhance the growth of the plant. Ambient light sensor is adopted for the control of proper combination of sunlight and LED to keep PPFD constant.

Development of Performance Analysis Methodology for Nuclear Power Plant Turbine Cycle Using Validation Model of Performance Measurements (원전 터빈사이클 성능 데이터의 검증 모델에 의한 성능분석 기법의 개발)

  • Kim, Seong-Geun;Choe, Gwang-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1625-1634
    • /
    • 2000
  • Verification of measurements is required for precise evaluation of turbine cycle performance in nuclear power plant. We assumed that initial acceptance data and design data of the plant could provide correlation information between performance data. The data can be used as sample sets for the correct estimation model of measurement value. The modeling was done practically by using regression model based on plant design data, plant acceptance data and verified plant performance data of domestic nuclear power plant. We can construct more robust performance analysis system for an operation nuclear power plant with this validation scheme.

A Study on the Development of Analytic Hierarchy Process Plant Evaluation System for Safety Management (안전관리를 위한 AHP 설비 평가시스템 개발에 관한 연구)

  • Yun, Yeo-Kwon;Cho, Young-Wook;Yang, Kwang-Mo
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.127-134
    • /
    • 2012
  • Plant safety management that is enforcing introducing more than 95% in domestic manufacturing industry is using total plant efficiency by the evaluation index, and as a result, can see a lot of examples that plant productivity, economy and safety is increased. The efficient safety estimation for a business should analyze an accident data by considering every possible and potential factor. This study's purpose centers plant safety management activities that is management system for plant production and safety efficiency's maximization, plant evaluation system that plant safety management activities factor(reliability, maitainability, safety, service quality) that is enforcing in manufacturing industry can develop evaluation model that can evaluate qualitative activities by quantitative activities in process that maximize plant safety management wishes to do design.

A Case Study of Steel-making Plant Engineering Standard Development Based On Systems Engineering Standards (시스템 엔지니어링 표준 기반 제철 플랜트 엔지니어링 업무표준 개발 사례)

  • Lee, TaeKyong;Cho, RaeHyuk;Salim, Shelly;Lee, JoongYoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.7-23
    • /
    • 2016
  • Plant engineering industry is considered as a key industry which will drive the future of Korea. However, Korean plant engineering companies have recently made huge losses in overseas businesses and the lack of engineering capability is pointed out as a main cause of this situation. Unlike Korean plant engineering companies, world leading engineering companies such as Flour and Bechtel have their own systems Engineering Standards/Guides ensuring successful fulfillments of the concept and basic design processes. An engineering standard for an organization is an essential means to shorten the time for engineering design, to maintain the engineering quality and to secure the engineering efficiency in the development of the complex system. Korean plant engineering companies'lack of engineering capability comes from the absence of the engineering standard. In the paper, we have developed a steel-making plant engineering standard based on a systems engineering standard. We chose both ISO/IEC/IEEE 15288 and NASA SE Handbook as main reference standards. First, we have introduced a life-cycle definition and a physical hierarchy of a general steel-making plant. Then we have introduced detailed engineering processes of each life-cycle stage. The full scope of the study was from the feasibility study to the basic design but in the paper, we have only introduced detailed engineering processes and exit criteria for the feasibility study and the concept design.

Review of Evaluation Method for Nuclear Power Plant Pipings under Beyond Design Basis Earthquake Condition (설계기준초과지진에 대한 원전 배관 평가 방법 검토)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2016
  • After Japanese Fukushima nuclear power plant accident caused by the beyond design basis earthquake and tsunami, it has turned to be a major challenge for nuclear safety. IAEA, US NRC and EU have provided new safety design standards for beyond design basis event, Domestic regulatory bodies have also enacted guidances for licensees and applicants on additional methods related to beyond design basis events. This paper describes several evaluation methods for applying to nuclear power plants piping for beyond design basis earthquake. As a results, energy method based on the absorbed energy on nuclear power plant, deterministic method following design code and theory, experience method considering past earthquake data and information and probabilistic methods similar to probabilistic risk assessment were reviewed.