• Title/Summary/Keyword: Plant design

Search Result 3,864, Processing Time 0.032 seconds

An Economic Assessment for APR+ Standard Detailed Design Developing Phase (APR+ 표준상세설계 개발단계에서의 경제성 평가)

  • Ha, Gak-Hyeon;Suh, Yong-Pyo;Kim, Man-Won;Kim, Sung-Choon;Park, Sun-Eung
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.292-300
    • /
    • 2012
  • KHNP CRI has been developing APR+ nuclear power plant since 2007, which is GEN III+ model with 4,361 MWth capacity. To develop safer and more economical nuclear power plant than APR1400, we studied domestic and foreign nuclear power plants under construction. We also reviewed nuclear power plants which are appropriate for domestic construction in Korea and also for export. Economic assessments were made twice during the second phase of standard detailed design of the plant. The result of the second phase of economic analysis for APR+ standard detailed design showed that APR+ N-th plant was 24.6% more economical than coal-fired 1,000MW power plant, and was evaluated to be competitive enough in global market for construction of the nuclear power plant.

Closed Forging of Car Gear Blanks on Hot Die Presses

  • yujian Wu;tingsong Wu;yipping Zhao;ji Li
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.127-132
    • /
    • 2003
  • This article mainly introduces the research of closed forging on 20MN hot die forging presses. After transforming of the equipments, optimizing of die design and improving of die-manufacturing precision, gear blanks used in car gearbox have been forged out without fins successfully.

  • PDF

Fault Detection by Using an Adaptive Observer

  • Inoue, A.;Deng, M.;Yoshinaga, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.710-713
    • /
    • 2005
  • In this paper, a design method to detect faults in plants with uncertainties is proposed. When a plant has faults, the plant will be corrupted by an unknown fault signal. In addition, the plant also includes uncertainties, such as disturbances and plant parameter deviations. In this case, the proposed method estimates the fault signal by using an adaptive observer. Numerical examples are given to demonstrate the validity of the proposed method.

  • PDF

Maintenance and repair of power plant control system (발전소 제어 시스템 유지보수 방향)

  • 이종희;하달규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.625-630
    • /
    • 1987
  • Technology associated with power plant control system has been heavily rely on foreign technology. The main reason is that the system has tomaintain stringent reliability and stability. Localization of this system can be started from localization of modules necessary for maintenance and repair in hydraulic and thermal power plant. Gradually and eventually system engineering capability can be built up to design and develop nuclear power plant control system through technology accumulation. Methods are presented to achieve this goal.

  • PDF

Design of a Reliable Network for DCS in Nuclear Power Plant (원자력 발전소 분산 제어 시스템을 위한 고신뢰 통신망의 설계)

  • Lee, Sung-Woo;Im, Han-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.588-590
    • /
    • 1997
  • In this paper, a highly reliable communication network for DCS in nuclear power plant is designed. The structure and characteristics of DCS in nuclear power plant is briefly explained. The features needed for a communication network for DCS in nuclear power plant is described. According to the abovo features, the layer structure of the communication network is determined and each layer is designed in detail.

  • PDF

Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water (방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

Performance Analysis of Supercritical Coal Fired Power Plant Using gCCS Simulator

  • Tumsa, Tefera Zelalem;Mun, Tae-Young;Lee, Uendo;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.37-40
    • /
    • 2014
  • Capturing the carbon dioxide emitted from coal-fired power plants will be necessary if targeted reduction in carbon emissions is to be achieved. Modelling and simulation are the base for optimal operation and control in thermal power plant and also play an important role in energy savings. This study aims to analyze the performance of supercritical coal fired power plant through steady and dynamic simulation using a commercial software gCCS. A whole power plant has been modeled and validated with design data of 500 MWe power plant, base and part load operations of the plant were also evaluated, consequently it had been proven that the simulated result had a good agreement with actual operating data. In addition, the effect of co-firng on the plant efficiency and flue gases were investigated using gCCS simulator.

  • PDF

Journal of Plant Biotechnology will be revolved toward the most rapid publication in the world plant science community in 2008: from submission to publication within two weeks (2008년 Journal of Plant Biotechnology가 세계에서 가장 빠른 식물과학분야의 저널로 거듭난다: 원고제출에서 출판까지 2주 이내로 단축)

  • Liu, Jang-R.;Min, Byung-Hoon
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.1-3
    • /
    • 2008
  • To revolve the Journal of Plant Biotechnology into the most rapid publication in the world plant science community in 2008 consistent with high standards, we set two plans: reorganization of the Editorial Board with members devoted to the new plan and adoption of e-Journal system, a total solution ensuring from the online submission to publication.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.