• Title/Summary/Keyword: Plant defense

Search Result 532, Processing Time 0.028 seconds

Biochemical Changes Induced due to Staphylococcal Infection in Spongy Alphonso Mango(Mangifera indica L.) Fruits

  • Janave, Machhindra Tukaram
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 2007
  • Spongy Alphonso mangoes were found to be infected with Staphylococcus bacteria. A Gram positive Staphylococcus strain was isolated from spongy pulp and identified from CABI Bioscience, UK, by partial 16S rDNA sequence analysis and by morphological and biochemical characterization through IMTECH, Chandigarh, India. Although identification by both of these methods indicated the organism belonged to same genus, different species names were given. Changes in total phenolics, reducing, and non-reducing sugars, respiration rate, total carotenoids, peroxidase(POX), and catalase activities were monitored during ripening of these fruits. The climacteric rise in spongy fruits was marked by an increase in respiration rate and a decrease in sugar content. Total phenolics content increased in spongy fruits as compared to ripe non-spongy fruits. Development of corky white tissue in spongy fruits was associated with about a 2.5-fold reduction in total carotenoids and a concomitant increase in lipoxygenase-mediated, $\beta$-carotene co-oxidation. A marked decrease in soluble protein content and about a 1.5-fold increase in POX activity was observed. Maximum POX activity was confined to 50-70%$(NH_4)_2SO_4$ fraction. The intense dark bands visible after POX specific substrate staining of the Native gel indicated a high expression of isoenzymes of POX in spongy fruits. Similarly, changes in levels of catalase activity were also observed in spongy fruits. The results suggest that infection of Alphonso mangoes with Staphylococcus bacteria affects the normal ripening processes of the fruit interfering with the carbohydrate and carotenoid metabolism. Also, the studies indicate the expression of POX and catalase enzymes as a plant defense response to microbial invasion.

  • PDF

Design for avoid unstable fracture in shipbuilding and offshore plant structure (조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술)

  • An, Gyubaek;Bae, Hong-Yeol;Noh, Byung-Doo;An, Young-Ho;Choi, Jong-Kyo;Woo, Wanchuck;Park, Jeong-Ung
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.

An Effective Defensive Response in Thai Aromatic Rice Varieties(Oryza sativa L. spp. indica) to Salinity

  • Cha-um, Suriyan;Vejchasarn, Phanchita;Kirdmanee, Chalermpol
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.257-264
    • /
    • 2007
  • Rice is one of the world's staple crops and is a major source of carbohydrate. Rice is exported from several countries, providing a major source of income. There are many documents reporting that rice is a salt-sensitive crop in its developmental stages. The objective of this investigation is to evaluate the effective salt-tolerance defense mechanisms in aromatic rice varieties. Pathumthani 1(PT1), Jasmine(KDML105), and Homjan(HJ) aromatic rice varieties were chosen as plant materials. Rice seedlings photoautotrophically grown in-vitro were treated with 0, 85, 171, 256, 342, and 427 mM NaCl in the media. Data, including sodium ion$(Na^+)$ and potassium ion$(K^+)$ accumulation, osmolarity, chlorophyll pigment concentration, and the fresh and dry weights of seedlings were collected after salt-treatment for 5 days. $Na^+$ in salt-stressed seedlings gradually accumulated, while $K^+$ decreased, especially in the 342-427 mM NaCl salt treatments. The $Na^+$ accumulation in both salt-stressed root and leaf tissues was positively related to osmolarity, leading to chlorophyll degradation. In the case of the different rice varieties, the results showed that the HJ variety was identified as being salt-tolerant, maintaining root and shoot osmolarities as well as pigment stabilization when exposed to salt stress or $Na^+$ enrichment in the cells. On the other hand, PT1 and KDML105 varieties were classified as salt-sensitive, determined by chlorophyll degradation using Hierarchical cluster analysis. In conclusion, the HJ-salt tolerant variety should be further utilized as a parental line or genetic resource in breeding programs because of the osmoregulation defensive response to salt-stress.

  • PDF

Vulnerability Analysis on a VPN for a Remote Monitoring System

  • Kim Jung Soo;Kim Jong Soo;Park Il Jin;Min Kyung Sik;Choi Young Myung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.346-356
    • /
    • 2004
  • 14 Pressurized Water Reactors (PWR) in Korea use a remote monitoring system (RMS), which have been used in Korea since 1998. A Memorandum of Understanding on Remote Monitoring, based on Enhanced Cooperation on PWRs, was signed at the 10th Safeguards Review Meeting in October 2001 between the International Atomic Energy Agency (IAEA) and Ministry Of Science and Technology (MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an Internet system for Remote Monitoring. According to the Internet-based Virtual Private Network (VPN) applied to Remote Monitoring, the Korea Atomic Energy Research Institute (KAERI) came to an agreement with the IAEA, using a Member State Support Program (MSSP). Phase I is a Lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of Phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated System (SDIS) Server, IAEA Server and TCNC (Technology Center for Nuclear Control) Server. In each system, Virtual Private Network (VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS Server and VPN; TCNC Server and VPN; and IAEA Server and VPN) via penetration testing.

Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer

  • Kim, Yu-Jin;Jeon, Ji-Na;Jang, Moon-Gi;Oh, Ji Yeon;Kwon, Woo-Saeng;Jung, Seok-Kyu;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Panax ginseng is one of the most important medicinal plants in Asia. Triterpene saponins, known as ginsenosides, are the major pharmacological compounds in P. ginseng. The present study was conducted to evaluate the changes in ginsenoside composition according to the foliation stage of P. ginseng cultured in a hydroponic system. Among the three tested growth stages (closed, intermediate, and opened), the highest amount of total ginsenoside in the main and fine roots was in the intermediate stage. In the leaves, the highest amount of total ginsenoside was in the opened stage. The total ginsenoside content of the ginseng leaf was markedly increased in the transition from the closed to intermediate stage, and increased more slowly from the intermediate to opened leaf stage, suggesting active biosynthesis of ginsenosides in the leaf. Conversely, the total ginsenoside content of the main and fine roots decreased from the intermediate to opened leaf stage. This suggests movement of ginsenosides during foliation from the root to the leaf, or vice versa. The difference in the composition of ginsenosides between the leaf and root in each stage of foliation suggests that the ginsenoside profile is affected by foliation stage, and this profile differs in each organ of the plant. These results suggest that protopanaxadiol- and protopanaxatriol(PPT)-type ginsenosides are produced according to growth stage to meet different needs in the growth and defense of ginseng. The higher content of PPT-type ginsenosides in leaves could be related to the positive correlation between light and PPT-type ginsenosides.

A Study on the Problem-Based Learning with Industry Co-operative Program for Effective PLM Education (문제중심학습과 신업체 현장실습 연계를 통한 효과적인 PLM 교육에 관한 연구)

  • Chae, Su-Jin;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.362-371
    • /
    • 2008
  • Generally, a PLM education program in university consists of lectures of theory, software lab and software development raining as an advanced subject. Most industries want more than these, such as practical problem solving capabilities, teamwork skills and engineering communications including human relationship, rhetoric, technical writing, presentation and etc. Problem-Based Learning is a problem-stimulated and student-centered teaming method, and an innovative education strategy for collaborative and self-directed learning by applying real world problems. Education paradigm changes from "teaching" to "learning" accomplished by team working, and students are encouraged to develop, present, explain and defense their ideas, suggestions or solutions of a problem, and the "cooperative teaming" proceeds spontaneously during team operations. Co-operative education program is an into-grated academic model and a structured educational program combining classroom learning with productive work experience in a field related to a student's academic or career goals. Based on the partnership between academic institutions and industries, students are engaged in real and productive "work" in the industry, in contrast with merely observing. In this paper, PBL with Co-op program is suggested as an effective approach for PLM education, and we made and operated a PBL-based education course with industry co-op program. The Co-op education in industry accompanied with the PBL course in university can improve practical problem solving capabilities of students, including modeling and management of P3R(Product, Process, resource and Plant) using commercial PLM software tools. By the result, we found this to be an effective strategy for helping students, professors and industries succeed in engineering education, especially PLM area.

New Species and New Records of Buellia (Lichenized Ascomycetes) from Jeju Province, South Korea

  • Wang, Xin Yu;Liu, Dong;Lokos, Laszlo;Kondratyuk, Sergey Y.;Oh, Soon-Ok;Park, Jung Shin;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • A new species and 2 new records of lichen genus Buellia were discovered from Chuja-do Island in Jeju Province during a recent floristic survey: B. chujana X. Y. Wang, S. Y. Kondr., L. $L\ddot{o}k\ddot{o}s$ & J.-S. Hur sp. nov., B. halonia (Ach.) Tuck., and B. mamillana (Tuck.) W. A. Weber. The new species is characterized by a brown, areolate thallus, the presence of perlatolic acid, and a saxicolous habitat. Together with previously recorded species, 10 Buellia species were confirmed from Jeju-do Island. Among these species, 3 growing in the exposed rocky area contained xanthone (yellowish lichen thallus, UV + orange), indicating that production of xanthone in this genus might be a defense strategy against the harm of UV light. Although the genus Buellia has been thoroughly studied in Korea before, novel species have been discovered continuously, and large species diversity has been found in this crustose genus, even from a small rocky island. This study indicates that the coastal area harbors a vast number of crustose lichen species, and there is great potential to discover unknown lichens in the coastal rocky area in Korea.

Effect of Ultraviolet (UV-B) on Antioxidants and Antioxidative Enzymes in Garden Balsam(Impatiens balsamina L.) (자외선(UV-B)이 봉선화(Impatiens balsamina L.)의 항산화제 및 항산화 효소에 미치는 영향)

  • Kim, Hak-Yoon
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To investigate the effects of ultraviolet(UV-B) on growth and biochemical defense responses of plant, garden balsam (Impatiens balsamina L.) was subjected to enhanced UV-B irradiation [daily dose: 0.02 (No UV-B) and 11.34 (enhanced UV-B) kJ $m^{-2}$ ; $UV-B_{BE}$] for 3 weeks. Enhanced UV-B drastically inhibited leaf area as well as dry weight of garden balsam. The content of malondialdehyde was significantly increased by about 50% after 3 weeks of UV-B irradiation. The ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were also considerably increased by UV-B irradiation. Three major polyamines of garden balsam leaves: putrescine, spermidine and spermine were observed. All polyamine contents were increased with UV-B irradiation. The enzyme (superoxide dismutase, ascorbate peroxidase etc.) activities of garden balsam were increased by the UV-B enhancement. Based on the results, enhanced UV-B caused oxidative stress in garden balsam and biochemical protection responses might be activated to prevent from damaging effects of oxidative stress generated by UV-B irradiation.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Human Operator Modeling of Target Tracking System for Improving Manual Control Command (표적추적장치의 수동제어명령 개선을 위한 운용자 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.51-57
    • /
    • 2007
  • Without human dynamics effects, the manually operated target tracking system has poor performance or instability in real environments. The tracking system is invalid when a human is added to the control loop as a real time delay, because input signals are generated by human operator to reduce the errors between target and gun. In this paper, we consider the human operator as a part of controller and modeling the human operator as a first-order model to generate the intentional force. But it is known that human modeling is not easy because of disturbance or noise of the vehicle while moving for the target. We performed a variety of experiments with real plant to identify the model's parameters and verify the proposed operator model's efficiency.