• Title/Summary/Keyword: Plant defense

Search Result 532, Processing Time 0.026 seconds

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Functional Characterization of PR-1 Protein, β-1,3-Glucanase and Chitinase Genes During Defense Response to Biotic and Abiotic Stresses in Capsicum annuum

  • Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.195-206
    • /
    • 2005
  • Spatial and temporal expression of pathogenesis-related (PR) gene and proteins has been recognized as inducible defense response in pepper plants. Gene expression and/or protein accumulation of PR-1, $\beta-1,3-glucanase$ and chitinase was predominantly found in pepper plants during the inoculations by Xanthomonas campestris pv. vesicatoria, Phytophthora capsici and Colletotrichum coccodes. PR-1 and chitinase genes were also induced in pepper plants in response to environmental stresses, such as high salinity and drought. PR-1 and chitinase gene expressions by biotic and abiotic stresses were regulated by their own promoter regions containing several stress-related cis-acting elements. Overexpression of pepper PR-1 or chitinase genes in heterogeneous transgenic plants showed enhanced disease resistance as well as environmental stress tolerances. In this review, we focused on the putative function of pepper PR-1, $\beta-1,3-glucanase$ and chitinase proteins and/or genes at the biochemical, molecular and cytological aspects.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Transcriptional profiles of Rhizobium vitis-inoculated and salicylic acid-treated 'Tamnara' grapevines based on microarray analysis

  • Choi, Youn Jung;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.37-48
    • /
    • 2016
  • The transcriptional profiles of 'Tamnara' grapevine (Vitis labruscana L.) to Rhizobium vitis were determined using 12,000 gene oligonucleotide microarray chips constructed with 6,776 unigenes based on the EST sequencing. Among them, 95 clones were up-regulated more than three times and 90 were down-regulated more than 5-times in the R. vitis-inoculated grapevines relative to the control vines. Treatment of salicylic acid showed that 337 clones were upregulated and 52 clones were down regulated in grapevines. Microarray analysis, reverse transcription-polymer chain reaction, and slot blot hybridization analysis revealed that 5, 14, and 64 clones were up-regulated and 10, 12, and 61 clones were down-regulated in wounded, salicylic acid-treated, and R. vitis-inoculated 'Tamnara' grapevine leaves, respectively. The expression patterns of ${\beta}$-1,3-glucanase, proline-rich protein, and lipoxygenase genes of 'Tamnara' moderately resistant to R. vitis were similar to those of resistant 'Concord' and 'Delaware' grapevines. However, chalcone synthase genes in 'Tamnara' grapevines showed similar expression patterns to susceptible grapevines 'Neomuscat' and 'Rizamat'. Further expression studies with various clones for each gene should be conducted to elucidate their roles in resistant responses against pathogens or other stimuli in grapevines. These results could provide better resources for understanding the mechanism of defense responses against crown gall disease and clues for identifying new genes that may play a role in defense against R. vitis in grapevines.

Differential Induction of Pathogenesis-Related Proteins in the Compatible and Incompatible Interactions of Tomato Leaves with Xanthomonas campestris pv. vesicatoria (Xanthomonas campestris pv. vesicatoria와 토마토잎의 친화적, 불친화적 반응에서 병생성관련 단백질의 유도)

  • 김정동;황병국
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 1995
  • Inoculation with the compatible strain Ds 1 of Xanthomonas campestris pv. vesicatoria caused brownish ad water-soaked lesions, but incompatible strain Bv5-4a produced hypersensitive symptoms with local necrosis on tomato (cv. Kwangyang) leaves. Bacterial populations of the compatible strains Ds 1 propagated more greatly than the incompatible strain Bv5-4a at the frist onset, but no differences were observed 5 days after inoculation. The bacterial infection induced the synthesis and accumulation of soluble proteins in tomato leaves, especially in the incompatible interaction. Native-polyacrylamide gel electrophoresis distinguished the soluble proteins in the tomato leaves infected by the compatible or incompatible strains. A protein of low molecular weight occurred only in the incompatible interaction. Some pathogenesis-related (PR) proteins, especially the 15, 18, 23, 26 and 54 kDa proteins, were detected only in the infected tomato leaves. In the two-dimensional electrophoresis, some proteins with different molecular weights (Mr. 21∼29 kDa) and the pI 8∼9 appeared more distinctly only in the incompatible interaction. These data suggest that the de novo synthesis of some PR proteins in tomato may be significant in defense against X. c. pv. vesicatoria.

  • PDF

Accumulation of Transcripts Abundance after Barley Inoculation with Cochliobolus sativus

  • Arabi, Mohammad Imad Eddin;AL-Daoude, Antonious;Shoaib, Amina;Jawhar, Mohammad
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.72-77
    • /
    • 2015
  • Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

Estimation of Hydrodynamic Derivatives of Full-Scale Submarine using RANS Solver

  • Nguyen, Tien Thua;Yoon, Hyeon Kyu;Park, Youngbum;Park, Chanju
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.386-392
    • /
    • 2018
  • It is necessary to predict hydrodynamic derivatives when assessing the maneuverability of a submarine. The force and moment acting on the vehicle may affect its motion in various modes. Conventionally, the derivatives are determined by performing captive model tests in a towing tank or applying a system identification method to the free running model test. However, a computational fluid dynamics (CFD) method has also become a possible tool to predict the hydrodynamics. In this study, virtual captive model tests for a full-scale submarine were conducted by utilizing a Reynolds-averaged Navier-Stokes solver in ANSYS FLUENT version 18.2. The simulations were carried out at design speed for various modes of motion such as straight forward, drift, angle of attack, deflection of the rudder, circular, and combined motion. The hydrodynamic force and moment acting on the submarine appended rudders and stern stabilizers were then obtained. Finally, hydrodynamic derivatives were determined, and these could be used for evaluating the maneuvering characteristics of the submarine in a further study.

Study on Maneuvering Characteristics of Submerged Body by Changing Its Design Parameters (몰수체 형상 설계인자에 따른 조종특성 연구)

  • Jeon, MyungJun;Yoon, Hyeon Kyu;Hwang, Junho;Cho, Hyeon Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Submerged bodies moving underwater behave differently based on their type and assigned mission. This paper describes the dynamic characteristics, including the stability, turning ability, and operational ability, of submerged bodies in relation to design parameters such as the tail cone angle, shape of the control plate, and length of the parallel middle body. A submerged body operated in other countries is adopted as a reference for the dynamic characteristics, its principal dimensions and the shape of the bare hull and appendages are used for comparison. This paper suggests a few candidate hull forms based on changes in the typical design parameters. Finally, the dynamic characteristics for these candidate hull forms are defined.

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Effect of Phytohormones and Chemical Inhibitors on Pathogenesis-related Genes Identified by Differential Hybridization in Rice Suspension Culture Cells

  • Kim, Sang-Gon;Wu, Jing-Ni;Wang, Yiming;White, Ethan E.;Choi, Young-Whan;Kim, Keun-Ki;Choi, In-Soo;Kim, Yong-Cheol;Kim, Sun-Hyung;Kang, Kyu-Young;Kim, Sun-Tae
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.386-393
    • /
    • 2010
  • In order to study disease resistance mechanisms in rice against the rice blast fungus Magnaporthe grisea, we screened fungal elicitor-responsive genes from rice suspension-cultured cells treated with fungal elicitors employing differential hybridization (DH). By DH screening, 31 distinct rice clones were isolated and a majority of them were full-length cDNAs encoding pathogenesisrelated (PR) genes. Sixteen of the 31 genes were upregulated at 4, 8, and 12 h following fungal elicitor treatment. To elucidate the effect of signal molecules and biotic elicitors on the regulation of rice defense genes, we further characterized the transcriptional expression patterns of representative isolated PR genes; OsGlu1, OsGlu2, OsTLP, OsRLK, and OsPR-10, following treatment with fungal elicitor, phytohormones, cycloheximide, and inhibitors of protein phosphorylation. Jasmonic acid (JA) induced transcriptional expression of OsGlu1, OsTLP, and OsRLK, but not of OsGlu2 and OsPR-10 at any of the tested time points. Salicylic acid (SA) and abscisic acid weakly induced the expression of OsTLP and OsRLK. SA showed an antagonistic effect with fungal elicitor and JA. Cycloheximide suppressed all these genes upon elicitor treatment, except for OsGlu2. Staurosporine only induced the expression of OsRLK. Application of calyculin A strongly induced OsRLK expression, but suppressed the expression of OsGlu2. Our study yielded a number of PR genes that play a role in defense mechanisms against the rice blast fungus, as well as contribute towards the elucidation of crosstalk between phytohormones and other modifications during defense signaling.