DOI QR코드

DOI QR Code

Accumulation of Transcripts Abundance after Barley Inoculation with Cochliobolus sativus

  • Received : 2014.12.15
  • Accepted : 2015.02.05
  • Published : 2015.03.01

Abstract

Spot blotch caused by the hemibiotrophic pathogen Cochliobolus sativus has been the major yield-reducing factor for barley production during the last decade. Monitoring transcriptional reorganization triggered in response to this fungus is an essential first step for the functional analysis of genes involved in the process. To characterize the defense responses initiated by barley resistant and susceptible cultivars, a survey of transcript abundance at early time points of C. sativus inoculation was conducted. A notable number of transcripts exhibiting significant differential accumulations in the resistant and susceptible cultivars were detected compared to the non-inoculated controls. At the p-value of 0.0001, transcripts were divided into three general categories; defense, regulatory and unknown function, and the resistant cultivar had the greatest number of common transcripts at different time points. Quantities of differentially accumulated gene transcripts in both cultivars were identified at 24 h post infection, the approximate time when the pathogen changes trophic lifestyles. The unique and common accumulated transcripts might be of considerable interest for enhancing effective resistance to C. sativus.

Keywords

References

  1. Al-Daoude, A., Jawhar, M. and Arabi, M. I. E. 2013. Hydrogen peroxide induction in barley-Cochliobolus sativus interaction. J. Plant Pathol. 95:197-1999.
  2. Al-Daoude, A. and Jawhar, M. 2009. Transcriptional changes in barley-Cochliobolus sativus interaction. Austral. Plant Pathol. 38:1-5. https://doi.org/10.1071/AP08068
  3. Apoga, D., Akesson, H., Jansson, H. B. and Odham, G. 2002. Relationship between production of the phytotoxin prehelminthosporol and virulence in isolates of the plant pathogenic fungus Bipolaris sorokiniana. Eur. J. Plant Pathol. 108:519-526. https://doi.org/10.1023/A:1019976403391
  4. Arabi, M. I. E. and Jawhar, M. 2004. Identification of Cochliobolus sativus (spot blotch) isolates expressing differential virulence on barley genotypes in Syria. J. Phytopathol. 152:461-464. https://doi.org/10.1111/j.1439-0434.2004.00875.x
  5. Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9:745-753. https://doi.org/10.1046/j.1365-313X.1996.9050745.x
  6. Baldwin, D., Crane, V. and Rice, D. 1999. A Comparison of gel - based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr. Opin. Plant Biol. 2:96-103. https://doi.org/10.1016/S1369-5266(99)80020-X
  7. Breyne, P., Dreesen, R. and Vandepoele, K. 2002. Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. U.S.A. 99:14825-14830. https://doi.org/10.1073/pnas.222561199
  8. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., Muthukrishna, S. and Datta, S. K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98:1138-1145. https://doi.org/10.1007/s001220051178
  9. Fetch, T. C. and Steffenson, B. J. 1999. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Dis. 83:231-217. https://doi.org/10.1094/PDIS.1999.83.3.213
  10. Ghazvini, H. and Tekauz, A. 2008. Host pathogen interactions among barley genotypes and Bipolaris sorokiniana isolates. Plant Dis. 92:225-233. https://doi.org/10.1094/PDIS-92-2-0225
  11. Gjetting, T., Hagedorn, P. H., Schweizer, P., Thordal-Christensen, H., Carver, T. L. and Lyngkjaer, M. F. 2007. Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol. Plant-Microbe Interact. 20:235-246. https://doi.org/10.1094/MPMI-20-3-0235
  12. Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757. https://doi.org/10.1016/S0960-9822(00)00560-1
  13. Huckelhoven, R., Fodor, J., Preis, C. and Kogel, K. H. 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol. 119:1251-1260. https://doi.org/10.1104/pp.119.4.1251
  14. Huckelhoven, R., Dechert, C., Trujillo, M. and Kogel, K. H. 2001. Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Mol. Biol. 47:739-748. https://doi.org/10.1023/A:1013635427949
  15. Hughes, P., Dennis, E., Whitecross, M., Liewelly, D. and Gage, P. 2000. The cytotoxic plant protein, -purothionin, forms ion channels in lipid membranes. J. Biol. Chem. 14:823-827.
  16. Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. 48:251-275. https://doi.org/10.1146/annurev.arplant.48.1.251
  17. Kumar, J., Huckelhoven, R., Beckhove, U., Nagarajan, S. and Kogel, K. H. 2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127-133. https://doi.org/10.1094/PHYTO.2001.91.2.127
  18. Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S. and Kogel, H. K. 2002. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol. Plant Pathol. 3:185-195. https://doi.org/10.1046/j.1364-3703.2002.00120.x
  19. Schafer, P., Huckelhoven, R. and Kogel, K. H. 2004. The white barley mutant Albostrians shows a super-susceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Mol. Plant-Microbe Interact. 17:366-373. https://doi.org/10.1094/MPMI.2004.17.4.366
  20. Wendy, E. D., Rowland, O., Piedras, P., Kim, E. H. and Jonathan, D. G. J. 2000. cDNA-AFLP reveals a striking overlap in race- specific resistance and wound response gene expression profiles. Plant Cell 12:963-977. https://doi.org/10.1105/tpc.12.6.963
  21. Wisniewska, H., Wakulinski, W. and Chelkowski, J. 1998. Susceptibility of barleys to Bipolaris sorokiniana seedling blight determined by disease scoring and electrolyte. J. Phytopathol. 146:563-566. https://doi.org/10.1111/j.1439-0434.1998.tb04755.x

Cited by

  1. Transcriptome profiling reveals distinct gene activations in barley responding to scald and spot blotch vol.46, pp.3, 2018, https://doi.org/10.1556/0806.46.2018.034