• 제목/요약/키워드: Plant defense

검색결과 526건 처리시간 0.026초

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

Tissue-specific systemic responses of the wild tobacco Nicotiana attenuata against stem-boring herbivore attack

  • Lee, Gisuk;Joo, Youngsung;Baldwin, Ian T.;Kim, Sang-Gyu
    • Journal of Ecology and Environment
    • /
    • 제45권3호
    • /
    • pp.143-151
    • /
    • 2021
  • Background: Plants are able to optimize defense responses induced by various herbivores, which have different feeding strategies. Local and systemic responses within a plant after herbivory are essential to modulate herbivore-specific plant responses. For instance, leaf-chewing herbivores elicit jasmonic acid signaling, which result in the inductions of toxic chemicals in the attacked leaf (tissue-specific responses) and also in the other unattacked parts of the plant (systemic responses). Root herbivory induces toxic metabolites in the attacked root and alters the levels of transcripts and metabolites in the unattacked shoot. However, we have little knowledge of the local and systemic responses against stem-boring herbivores. In this study, we examined the systemic changes in metabolites in the wild tobacco Nicotiana attenuata, when the stem-boring herbivore Trichobaris mucorea attacks. Results: To investigate the systemic responses of T. mucorea attacks, we measured the levels of jasmonic acid (JA), JA-dependent secondary metabolites, soluble sugars, and free amino acids in 7 distinct tissues of N. attenuata: leaf lamina with epidermis (LLE), leaf midrib (LM), stem epidermis (SE), stem pith (SP), stem vascular bundle (SV), root cortex with epidermis (RCE), and root vascular bundle (RV). The levels of JA were increased in all root tissues and in LM by T. mucorea attacks. The levels of chlorogenic acids (CGAs) and nicotine were increased in all stem tissues by T. mucorea. However, CGA was systematically induced in LM, and nicotine was systematically induced in LM and RCE. We further tested the resource allocation by measuring soluble sugars and free amino acids in plant tissues. T. mucorea attacks increased the level of free amino acids in all tissues except in LLE. The levels of soluble sugars were significantly decreased in SE and SP, but increased in RV. Conclusions: The results reveal that plants have local- and systemic-specific responses in response to attack from a stem-boring herbivore. Interestingly, the level of induced secondary metabolites was not consistent with the systemic inductions of JA. Spatiotemporal resolution of plant defense responses against stem herbivory will be required to understand how a plant copes with attack from herbivores from different feeding guilds.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Resonance and Instability of Blade-Shaft Coupled Bending Vibrations with In-plane Blade Vibration

  • Anegawa, Norihisa;Fujiwara, Hiroyuki;Okabe, Akira;Matsushita, Osami
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.169-180
    • /
    • 2008
  • As a major component of a power plant, a turbine generator must have sufficient reliability. Longer blades have lower natural frequency, thereby requiring that the design of the shaft and blade takes into account the coupling of the blade vibration mode, nodal diameter k=0 and k=1 with vibration of the shaft. The present work analyzes the coupling of the translation motion of the shaft with in-plane vibration of the blades with k=1 modes. At a rotational speed ${\Omega}_1=|{\omega}_s-{\omega}_b|$, the resonance of the blades has a relatively large amplitude. A violent coupled resonance was observed at a rotational speed ${\Omega}_2=|{\omega}_s+{\omega}_b|$. Resonance in blade vibration at ${\Omega}_1=|{\omega}_s-{\omega}_b|$ was experimentally confirmed.

Different Mechanisms of Induced Systemic Resistance and Systemic Acquired Resistance Against Colletotrichum orbiculare on the Leaves of Cucumber Plants

  • Jeun, Yong-Chull;Park, Kyung-Seok;Kim, Choong-Hoe
    • Mycobiology
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2001
  • Defense mechanisms against anthracnose disease caused by Colletotrichum orbiculare on the leaf surface of cucumber plants after pre-treatment with plant growth promoting rhizobacteria(PGPR), amino salicylic acid(ASA) or C. orbiculare were compared using a fluorescence microscope. Induced systemic resistance was mediated by the pre-inoculation in the root system with PGPR strain Bacillus amylolquefaciens EXTN-1 that showed direct antifungal activity to C. gloeosporioides and C. orbiculare. Also, systemic acquired resistance was triggered by the pre-treatments on the bottom leaves with amino salicylic acid or conidial suspension of C. orbiculare. The protection values on the leaves expressing SAR were higher compared to those expressing ISR. After pre-inoculation with PGPR strains no change of the plants was found in phenotype, while necrosis or hypersensitive reaction(HR) was observed on the leaves of plants pre-treated with ASA or the pathogen. After challenge inoculation, inhibition of fungal growth was observed on the leaves expressing both ISR and SAR. HR was frequently observed at the penetration sites of both resistance-expressing leaves. Appressorium formation was dramatically reduced on the leaves of plants pre-treated with ASA, whereas EXTN-1 did not suppress the appressorium formation. ASA also more strongly inhibited the conidial germination than EXTN-1. Conversely, EXTN-1 significantly increased the frequency of callose formation at the penetration sites, but ASA did not. The defense mechanisms induced by C. orbiculare were similar to those by ASA. Based on these results it is suggested that resistance mechanisms on the leaf surface was different between on the cucumber leaves expressing ISR and SAR, resulting in the different protection values.

  • PDF

Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng C.A. Meyer

  • Lee, Ok-Ran;Sathiyaraj, Gayathri;Kim, Yu-Jin;In, Jun-Gyo;Kwon, Woo-Seang;Kim, Ju-Han;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.1-11
    • /
    • 2011
  • Korean ginseng is a medicinally important perennial herb from the family Araliaceae. It has been cultivated for its highly valued medicinal properties for over 1,000 years in east Asian countries such as China, Korea, and Japan. Due to its longtime cultivation in shady areas, ginseng is frequently exposed to pathogenic infections. Plants protect themselves from microbial pathogens using an array of defense mechanisms, some of which are constitutively active, while others are activated upon pathogen invasion. These induced defense responses, controlled by defense-related genes, require tradeoffs in terms of plant fitness. We hypothesize that ginseng, as with other plants, possesses regulatory mechanisms that coordinate the activation of attacker-specific defenses in order to minimize fitness costs while attaining optimal resistance. Several classes of defense-related genes are induced by infection, wounds, irradiation, and other abiotic stresses. Both salicylates and jasmonates have been shown to cause such responses, although their specific roles and interactions in signaling and development are not fully understood in ginseng. This review summarizes possible defense-related genes in ginseng based on their expression patterns against biotic and abiotic stresses and describes their functional roles.

Role of ${\alpha}$-tocopherol in cellular signaling: ${\alpha}$-tocopherol inhibits stress-induced mitogen-activated protein kinase activation

  • Hyun, Tae-Kyung;Kumar, Kundan;Rao, Kudupudi Prabhakara;Sinha, Alok Krishna;Roitsch, Thomas
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.19-25
    • /
    • 2011
  • Tocopherols belong to the plant-derived poly phenolic compounds known for antioxidant functions in plants and animals. Activation of mitogen-activated protein kinases (MAPK) is a common reaction of plant cells in defense-related signal transduction pathways. We report a novel non-antioxidant function of ${\alpha}$-tocopherol in higher plants linking the physiological role of tocopherol with stress signalling pathways. Pre-incubation of a low concentration of $50{\mu}M$ ${\alpha}$-tocopherol negatively interferes with MAPK activation in elicitor-treated tobacco BY2 suspension culture cells and wounded tobacco leaves, whereas pre-incubated BY2 cells with ${\alpha}$-tocopherol phosphate did not show the inhibitory effect on stimuli-induced MAPK activation. The decreased MAPK activity was neither due to a direct inhibitory effect of ${\alpha}$-tocopherol nor due to the induction of an inhibitory or inactivating activity directly affecting MAPK activity. The data support that the target of ${\alpha}$-tocopherol negatively regulates an upstream component of the signaling pathways that leads to stress dependent MAPK activation.

Physiological and Biochemical Changes in Lucerne (Medicago sativa) Plants Infected with 'Candidatus Phytoplasma australasia'-Related Strain (16SrII-D Subgroup)

  • Ayvaci, Humeyra;Guldur, M. Ertugrul;Dikilitas, Murat
    • The Plant Pathology Journal
    • /
    • 제38권2호
    • /
    • pp.146-158
    • /
    • 2022
  • Changes in physiological and biochemical patterns in lucerne plants caused by the presence of 'Candidatus Phytoplasma australasia', which is one of the significant pathogens causing yield losses in lucerne plants, were investigated. Significant differences were evident in total chlorophyll, chlorophyll a, chlorophyll b, and protein amounts between 'Ca. Phytoplasma australasia'-positive and negative lucerne plants. Stress-related metabolites such as phenol, malondialdehyde, and proline accumulations in 'Ca. Phytoplasma australasia'-positive plants were remarkably higher than those of phytoplasma-negative plants. As a response to disease attack, phytoplasma-positive plants exhibited higher antioxidant enzymes (peroxidase and catalase) and nonenzymatic metabolite responses such as jasmonic and salicylic acids. We state that partial disease responses were revealed for the first time to breed resistant lucerne lines infected by 'Ca. Phytoplasma australasia'.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Generalized Multicommodity Distribution System Design

  • Chen, Ju-Long;Morris, James-G.;Son, Ki-Hyoung
    • Management Science and Financial Engineering
    • /
    • 제5권2호
    • /
    • pp.25-41
    • /
    • 1999
  • This paper generalizes the classic two-stage multicommodity distribution system design problem to the one that includes plant locations as well as distribution center locations. Accommodating plant location leads to subproblems which are mixed are mixed integer. Hence. no LP-type subproblems are avail-able, and therefore standard Benders decomposition no longer applies. We develop new solution method which combines an integer L-shaped method with Benders decomposition to suit the purpose, and pre-sent the test results.

  • PDF