• Title/Summary/Keyword: Plant ash

Search Result 629, Processing Time 0.022 seconds

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

Effect of Incineration Plant Ash on Fundamental Properties of High Volume Blast Furnace-Slag Mortar incorporating Recycled Aggregate Powder (소각장애시의 치환률 변화에 따른 순환골재 미분말 함유 고로슬래그 다량치환 모르타르의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Heo, Young-Sun;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.126-127
    • /
    • 2013
  • For the decades, various of materials were used to instead of cement as the high volume CO2 occurred during the process of cement manufacture. In this paper, incineration plant ash was used in the mortar which incorporating high volume of blast furnace slag. Water to binder ratio(W/B) is fixed as 50%,BS+RP's replacement ratio is fixed as 80%,and the replacement ratio of WA1 is range as 0,0.5,1,2,3,4,5%.For the fresh mortar, flow and chloride contents has been tested. For the hardened mortar, compressive strength at 3,7,28 days has been tested. the result shows that when the replacement ratio of WA1 is 0.5%,the chloride contents is less than 0,3 kg/m3,the flowability and strength also performed better than other replacement types of mortar.

  • PDF

Selection of Herbal Medicines Requiring Quality Control for Loss on Drying, Total Ash, and Acid-insoluble Ash in Korea

  • Kim, Dong-Gyu;Kim, Bog-Soon;Kim, Yeon-Cheon;Hwang, Young-Ok;Chae, Young-Zoo;Park, Seung-Kook
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.38-44
    • /
    • 2011
  • The quality inspections items such as loss on drying, total ash, and acid-insoluble ash contents in herbal medicines, have a correlation with external sources of pollution, but are not themselves hazardous factors. Z-scores for standard normal distribution were used to investigate herbal medicines requiring quality control, which exceeds the regulatory limits of quality inspection. In total, 7,773 samples were analyzed based on plant parts. For the loss on drying, the numbers of items of herbal medicines requiring quality control are like these; 15 items for above-ground parts and 5 items for underground parts. For the total ash, 21 items for above-ground parts and 4 items for underground parts. For the acid-insoluble ash, 8 items for above-ground parts and 1 item for underground parts.

A study on development of artificial aggregates for embankment using reclaimed coal ash from thermoelectric power station (화력발전소 매립석탄회를 이용한 성토용 인공골재 개발 연구)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Jang, Nam-Ju;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1051-1060
    • /
    • 2008
  • The use of the coal ash for surcharge material, in a view of the environmental aspect, can decrease amount of the reclamation through recycling waste materials as well as prevent a destruction of the ecosystem attributed to sand picking. In addition, it can reduce both unit cost of material and construction expenses. In this study, new construction material as alternative surcharge material using coal ash, which is by-product from thermoelectric power plant, were developed. Mixing ratios of fly ash and bottom ash derived from the coal ash in Samchunpo thermoelectric power plants were determined. Furthermore, mixing conditions depending on the ratios of the cement and gypsum used for chemical additive were determined too. Uniaxial compression strength tests were conducted at different mixing conditions and Design graph of optimum mixing ratio at each required strength for economic efficiency is indicated in this paper.

  • PDF

Performance Evaluation of Inter-Locking Block Using Fly Ash

  • Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • In this paper, the properties of inter - locking block using fly ash are discussed in order to provide economical advantages and improve quality, and protect environment and recycle resources. Fly ash is the by-product of coal in thermal power plant. The experimental parameters are fly ash content, the amount of AE water - reducing agent and mixing proportion of cement mortar. According to the experimental results, the improvement of quality in the side of strength, absorption ratio and freeze - thaw resistance for manufacturing inter -locking block and the curtailment of cost can be achieved in case of 15% of fly ash and 0.3% of AE water- reducing agent are mixed into mortar mixture of 1 :6(C:S).

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Mingyu Lee;Don
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.167-175
    • /
    • 1992
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-Pl zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-Pl exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for Pb2+ ion. The metal ion selectivity of Na-Pl was determined in a decreasing order : $Pb^{2+}$>$Cd^{2+}$>$Cu^{2+}$+>$Zn^{2+}$>$Fe^{3+}$

  • PDF

The Study on Long-Terms Properties of Concrete Using C Class Fly Ash (C급 플라이애쉬 콘크리트의 장기특성에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kwon, Yeong-Ho;Ahn, Jae-Hyen;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.141-145
    • /
    • 1996
  • The primary purpose of this study is to investigate reusal techniques of by-product produced the combined heat power plant in the construction field, which may contribute to the savings of construction materials and the conservation of enviornment. This study is compared and evaluated by testing the chemical resistance, adiabatic temperature rising test, creep and drying shrinkage. As the result of the study, the following conclusions are derived : (1) hydration heat of the fly ash concrete is less than the plain concrete in adiabatic temperature rising test, (2) the fly axh concrete (FA 30%) is similar to the plain concrete in the chemical resistamce, (3) the fly ash concrete (FA 10, 30%) is similar to the plain concrete in drying shrinkage, but the fly ash concrete (FA 50%) is highly increased, (4) the fly ash concrete (FA 30%) is less than the plain concrete in creep test.

  • PDF

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Lee Mingyu;Lee Donghwan;Oh Yunghee;Ahn Byoungjoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.167-175
    • /
    • 1997
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-P1 zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-P1 exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for $Pb^{2+}$ ion. The metal ion selectivity of Na-P1 was determined in a decreasing order : $Pb^{2+}>Cd^{2+}>Cu^{2+}>Zn^{2+}>Fe^{3+}$.

  • PDF

The Characteristics of Compressive Strength and Leachability on Solidification of Chromium Tannery Sludge adding to Coal Fly Ash (비산회를 첨가한 피혁공장 크롬 슬러지의 고화시 압축강도 및 용출 특성)

  • 주소영;연익준;신필식;전병진;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • In this study, the heavy metals in tannery sludge were solidified by using cement and power plant fly ash. Solidification characteristics were discussed with the compressive strength and chromium leaching characteristics of solids. The compressive strength of cement mortar was increased by the amount of fly ash up to 24.3~33.8%, which was considered the results of pozzolanic reaction. When the content of fly ash was 20%, cement mortar showed the highest value $295kg/\textrm{cm}^2$ for 28 days curing. At early curing days, solidified chromium tannery sludge solids were showed lower compressive strength because of the retard on the hydration of cement, but the compressive strength was recovered to be more than $140kg/\textrm{cm}^2$ for 28 days curing regardless with the amounts of fly ash. Also, the results of leaching tests by KSM and TCLP method were showed that the solidified chromium sludge have leached out 0.3~2.2% and 11~17%, respectively.

  • PDF

High Resistivity Characteristics of the Sinter Dust Generated from the Steel Plant

  • Lee, Jae-Keun;Hyun, Ok-Chun;Lee, Jung-Eun;Park, Sang-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.630-638
    • /
    • 2001
  • The electrical resistivity of sinter dusts generated from the steel industry and coal fly ash from the coal power plant has been investigated using the high voltage conductivity cell based on JIS B 9915 as a function of temperature and water content. Dust characterization such as the chemical composition, size distribution, atomic concentration, and surface structure has been conducted. Major constituents of sinter dusts were Fe$_2$O$_3$(40∼74.5%), CaO (6.4∼8.2%), SiO$_2$(4.1∼6.0%), and unburned carbon (7.0∼14.7%), while the coal fly ash consisted of mainly SiO$_2$(51.4%), Al$_2$O$_3$(24.1%), and Fe$_2$O$_3$(10.5%). Size distributions of the sinter dusts were bi-modal in shape and the mass median diameters (MMD) were in the range of 24.7∼137㎛, whereas the coal fly ash also displayed bi-modal distribution and the MMD of the coal fly ash was 35.71㎛. Factors affecting resistivity of dusts were chemical composition, moisture content, particle size, gas temperature, and surface structure of dust. The resistivity of sinter dusts was so high as 10(sup)15 ohm$.$cm at 150$\^{C}$ that sinter dust would not precipitate well. The resistivity of the coal fly ash was measured 1012 ohm$.$cm at about 150$\^{C}$. Increased water contents of the ambient air lowered the dust resistivity because current conduction was more activated for absorption of water vapor on the surface layer of the dust.

  • PDF