• Title/Summary/Keyword: Plant Tissue Culture

Search Result 873, Processing Time 0.032 seconds

Viral Infection of Tissue Cultured Orchids and Evaluation of Damages

  • Chung, Bong-Nam;Yoon, Ju-Yeon;Kim, Mi-Sun
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.194-197
    • /
    • 2010
  • Most orchids are propagated by tissue culture. To survey the viral infection of tissue cultured Orchids, total RNA was extracted from in vitro Cymbridium and Phalaenopsis spp. collected from companies producing tissue-cultured orchids, and RT-PCR analysis was conducted with primer pairs specific to Cymbidium mosaic virus (CymMV) and Odontoglossum ring spot virus(ORSV), which are infecting wide range of orchid genera. The bulb size of Cymbidium infected with CymMV and ORSV was compared with healthy one at 10 months after planting in vitro orchids in the glasshouse. The CymMV or ORSV infection in 97 Cymbidium and 55 Phalaenopsis plants was 84.5 and 89.1 %, respectively. Mixed infection was found in 52.6 and 47.3% of Cymbidium and Phalaenopsis tested, whereas virus-free orchids were 15.5 and 10.9%, respectively. The CymMV and ORSV reduced the bulb size by 2.7-50% depending on the cultivars of Cymbidium. The both viruses caused yellowing, mottle and mosaic with or without necrosis in 4 Cymbidium cultivars.

Callus Induction and Embryogenesis Through Pollen Culture in Paeonia albiflora PALL (작약의 화분배양에 의한 캘러스 및 배발생)

  • 김영숙;이병기
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.1
    • /
    • pp.13-17
    • /
    • 1995
  • In order to induce haploid plant through pollen culture, pollens of Paeonia albiflora were cultured on MS liquid medium The development of micospore through pollen culture was examined The effect of low temperature (5$^{\circ}C$, 10 days) pretreatment on callus induction and embryogenesis in pollen culture was not evident Calli derived from pollen gave rise to globular embryos when transferred onto solid medium containing 0.5 mg/, 2,4-L. The effect of low temperature pretreatment and medium. combination to pollen viability was unrecognized. Pollen viability was reduced as the culture proceeded.

  • PDF

High-frequency Plant Regeneration from Mature Seed-derived Callus Cultures of Orchardgrass (오차드그래스 성숙종자로부터 캘러스 유도 및 고효율 식물체 재분화)

  • Lee, Sang-Hoon;Lee, Dong-Gi;Kim, Jin-Soo;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.341-346
    • /
    • 2003
  • In an effort to optimize tissue culture conditions for genetic transformation of orchardgrass (Dactylis glomerata L.), an efficient and high-frequency plant regeneration system from seed-derived calli was established. Embryogenic calli induced on MS medium containing 3mg/L 2,4-D and 0.1mg/L BA had significantly improved regeneration ability. Plant regeneration rate was 92% when embryogenic calli were cultured on N6 medium supplemented with 1mg/L 2,4-D and 3mg/L BA. Among three kinds of medium, MS and N6 medium were optimal for embryogenic callus induction and plant regeneration, respectively. Ho difference in callus induction frequency was observed among four cultivars of orchardgrass, however, "Roughrider" cultivar showed higher regenerability with the frequency of 61%. Addition of maltose to the regeneration medium as a carbon source dramatically increased regeneration frequency up to 69%. A short tissue culture period and high-frequency regeneration system would be beneficial for molecular breeding of orchardgrass through genetic transformation.

Current status of tissue culture and genetic transformation systems in oilseed rape plants (Brassica napus L.) (유채 조직배양 및 형질전환 연구동향)

  • Lee, Sang-Il;Kim, Yun-Hye;Lee, Dong-Hee;Lee, Yu-Mi;Park, Seo-Jun;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.379-387
    • /
    • 2010
  • Oilseed rape (Brassica napus L.) is an important crop due to its high oil content in the seed. Recently, the demand for the improvement of crop for biodisel energy source is increased as oil prices in the world has increased dramatically. Until now, oilseed rape breeding was carried out by cross-hybridization between different varieties and related germplasms. However, like as many other crops, the application of tissue culture and gene transformation systems has been introduced into oilseed rape breeding program including the development of transgenic canola plants. In this study, we reviewed a history of tissue culture and genetic transformation research in oilseed rape plants and indicated some important aspects for the production of transgenic oilseed rape plants.

Genomic Variations of Rice Regenerants from Tissue Culture Revealed by Whole Genome Re-Sequencing

  • Qin, Yang;Shin, Kong-Sik;Woo, Hee-Jong;Lim, Myung-Ho
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.426-433
    • /
    • 2018
  • Plant tissue culture is a technique that has invariably been used for various purposes such as obtaining transgenic plants for crop improvement or functional analysis of genes. However, this process can be associated with a variety of genetic and epigenetic instabilities in regenerated plants, termed as somaclonal variation. In this study, we investigated mutation spectrum, chromosomal distributions of nucleotide substitution types of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) by whole genome re-sequencing between Dongjin and Nipponbare along with regenerated plants of Dongjin from different induction periods. Results indicated that molecular spectrum of mutations in regenerated rice against Dongjin genome ranged from $9.14{\times}10^{-5}$ to $1.37{\times}10^{-4}$ during one- to three-month callus inductions, while natural mutation rate between Dongjin and Nipponbare genomes was $6.97{\times}10^{-4}$. Non-random chromosome distribution of SNP and InDel was observed in both regenerants and Dongjin genomes, with the highest densities on chromosome 11. The transition to transversion ratio was 2.25 in common SNPs of regenerants against Dongjin genome with the highest C/T transition frequency, which was similar to that of Dongjin against Nipponbare genome.

In vitro Callus and Somatic Embryo Induction of Six Hosta Species Native to Korea

  • Choi, Han;Lee, Seung Youn;Ryu, Sun Hee;Yoon, Sae Mi;Kim, Sang Yong;Lee, Jong Suk;Yang, Jong Cheol
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.80-80
    • /
    • 2018
  • Hosta is a genus of the family Asparagaceae and distributed in East Asia. There are six Hosta species (Hosta capitata (Koidz.) Nakai, H. clausa Nakai, H. jonesii M.G.Chung, H. minor (Baker) Nakai, H. venusta F.Maek., and H. yingeri S.B.Jones) native to Korea and among them, four species (H. minor, H. jonesii, H. venusta and H. yingeri) are endemic to the Korea peninsula. Hosta is generally propagated by seed, crown division or tissue culture. However, tissue culture is a more efficient method to mass proliferation, a new cultivar development and disease-free plantlet production in a limit time. Hence, we conducted this study to evaluate the influence of various plant growth regulators (PGRs) treatments on the induction of callus and somatic embryo of the six Hosta species. Leaf, petiole and root were used to select optimum tissue culture explants. Petiole explants thus only were used for callus induction and somatic embryogenesis with TDZ (0.1, 0.5 or 1.0mg/L) and NAA (0.1 or 0.5 mg/L) combinations. After 12 weeks of culture, the highest rate of somatic embryogenesis was achieved on modificated MS medium containing 1.0 mg/L TDZ and 0.1 mg/L NAA in H. capitata and H. minor (15.5%, respectively), 0.1 or 0.5 mg/L TDZ and 0.1 mg/L NAA in H. jonesii (22.2%), 1.0 mg/L TDZ and 0.5 mg/L NAA in H. yingeri (26.7%), and 0.1 mg/L TDZ and 0.5 mg/L NAA in H. venusta (53.3%). H. clausa showed very low effect on somatic embryogenesis by PGRs; 2.2%. There was interspecies difference to PGRs respond for callus and somatic embryo induction. Regenerated multiple shoots and plantlet of H. minor, H. jonesii, H. venusta and H. yingeri were obtained via somatic embryogenesis.

  • PDF

Varietal Difference in Plant Regeneration from Cotyledon Culture of Capsicum annuum L. (고추 자엽에서 식물체 재분화의 품종간 차이)

  • 오명규;이영만;박문수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.301-304
    • /
    • 1998
  • Effects of genotype and culture medium on plant regeneration from cotyledon segments of red pepper(Capsicum annuum L.) was investigated. Among combinations of IAA(0.25 and 0.50 mg/L) and zeatin(2.0 and 4.0 mg/L) added to MS medium, combination of 2.0 mg/L zeatin and 0.25 mg/L IAA was shown to be the best for shoot differentiation from cotyledon segments. Shoot regeneration from cotyledon explants took 9 to 25days, depending on genotypes and culture media. Early shooting was observed in Yeongyangjaelae, Putgochw, Karkovskij-A-35, Gris I-A-1 on MS medium containing 2.0 mg/L zeatin and 0.25 IAA mg/L. Percent of explants producing shoots, as also influenced by genotypes and culture media, were over 90% for 621, Yeongyangjaelae, Putgochw, Nikko jacksacgmulgochw, Ch-6-Num-216, and Kajenskij-A-35 when cultured on MS medum supplemented with 2.0 mg/L zeatin and 0.25 mg/L IAA and for Fresno chile, PI 169126, Kajenskij-A-35, jacksacgmulgochw, and PI 297438 on MS medium including 2.0 mg/L BA and 1.0 mg/L IAA.

  • PDF

Isolation of Protoplasts from Cultured Cells of Potato (Solanum tubersoum L.) Tuber Tissue (감자(Solanum tuberosum L.) 괴경의 배양세포로부터 원형질체의 분리)

  • 정상호
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • Protopasts were isolated from cultured cells of potato (Solanum tuberosum L.) tuber tissue. The ability of callus formation from the culture cells was higher in cultivars Dejima and Superior than in Shimabara and Irish Cobbler on Lam's medium. Therefore, the former was used as sources for protoplast isolation. Friable calli were transferred to liquid media and cells in exponential phase were used for protoplast isolation. In both of Dejima and Superior, the yield of protoplasts was high in the enzyme solution of 2% Onozuka cellulase and 1% macerozyme. Also, viability of isolated protoplasts was very good. Thus, it seems that these protoplasts would be applicable to various aims of research.

  • PDF