• Title/Summary/Keyword: Plant Projects

Search Result 329, Processing Time 0.027 seconds

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

Preliminary Feasibility Study for Commercial DME Plant Project (DME 상용화 플랜트 예비 타당성 조사)

  • Mo, Younggi;Kang, Minseo;Song, Taekyoung;Baek, Youngsoon;Cho, Wonjun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-being energy resources. DME has similar characteristics to those of LPG and can be substituted Diesel fuel. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas with KOGAS's own technologies. KOGAS had finished the construction of 10ton/day DME demonstration plant in 2008, we have established the basic design of commercial plant which can produce 3,000ton/day DME. Specifically, an economic model for a commercial DME project will be presented. It accounts for all the major cost factors that are considered in a commercial scale project as the model input for performing cash flow analysis, after which key economic indicators are produced including the internal rate of return (IRR), net present value (NPV). Sensitivity analysis is performed to identify dominant cost factors to the project economics and quantify their impact. The inputs to the economic analysis will be based on representative cost factors from the commercial-scale design of KOGAS' direct DME process supplemented by literature data. Case study results will be presented based on recent commercialization projects.

Estimation of the Asbestos Handling History of Workers in the Automobile Manufacturing Industry in Korea (자동차 제조 사업장 근로자들의 석면 취급 이력 추정)

  • Choi, Sangjun;Kim, Shinbum;Choi, Youngeun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.423-432
    • /
    • 2017
  • Objectives: This study was conducted to evaluate asbestos handling history of workers at automobile manufacturing plants in Korea. Methods: National regulations on asbestos and Korea Occupational Safety and Health Agency(KOSHA) database on the information of asbestos containing products were reviewed. We investigated asbestos related materials from one automobile manufacturing plant. Material safety data sheets(MSDS) collected in 2010, work environment monitoring results reported from 2000 to 2013, trade union reports and asbestos survey reports were reviewed. We also interviewed workers with long career and did walk-through survey. Results: The Ministry of Labor in Korea has permitted asbestos manufacturing since 1990. In 1997, the use of crocidolite and amosite asbestos were banned. In 2007, the Korean government announced a total ban on the manufacturing, importation and use of all kinds of asbestos, which took full effect in 2009. A total of 174 asbestos products information from KOSHA database was analyzed. Extruded cement panel for building, special brake for crane farm machinery, gasket, joint sheet and thermal insulator were produced until 2007. From automobile manufacturing plant survey, we confirmed that asbestos containing materials(ACM) such as gasket, heating induction materials have been used until 2011. Asbestos containing building materials(ACBM) such as bamlites, slate and ceiling tex were reported at 122 asbestos dismantling projects in 2014. Conclusion: Although the use of all kinds of asbestos were banned from 2009, ACMs and ACBMs installed before 2009 were still found at automobile manufacturing plant until 2011 and 2014 respectively. In particular, asbestos slates should be managed because most of slates had not been removed until 2014.

Investigation on the Technology Trend in Omija by the Patent Index (특허지표를 통한 오미자 기술 동향 연구)

  • Choi, Ji-Weon;Kim, Jung-Eun;Kim, Su-yeon;Bae, Yeoung-Seuk;Kim, Chang-Kug
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.466-474
    • /
    • 2017
  • The Omija (Schizandra chinensis Baillon) is a fruit native to northeast Asia that is cultivated in South Korea and China. Using 1,938 valid patents of 6 group countries, we analyzed the patent trend based on year, countries, applicants, and technology. The technologies are categorized the 10 sub-technologies such as medicine, quasi-drugs, food, feed, cosmetics, cultivation, genome, manufacture, preprocessing, and etc. The technology level and competitiveness are analyzed using patent index such as cites per patent, patent impact index, patent family size and technology strength. In Korea, patent number rapidly increasing and individual technical level is lower than other countries. However, overall technical competitiveness is estimated high due to multiple patents. We suggest that cosmetics and cultivation fields are most likely to be developed in future omiza technology development in Korea. Our study will provides to the information of technical trend to support performing of new projects for Omija plant.

A Study on Methods for Developing by Nurturing Clean Thermal Power Generation Technology (청정화력발전 기술 육성 방안 연구)

  • Kim, Yeong-Mi;Lee, Won-Hak
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • The Korean government views coal-fired power plants as the key cause of the fine dust generation, and is developing an energy policy to replace and demolish old coal-fired power plants. According to the Eighth Power Supply Base Plan (2017-2031), the maximum power capacity in 2030 is expected to be 100.5GW, which is 17.9% higher than the current level (85.2GW). The plan aims to reduce the facility size and power generation ratio from nuclear and coal resources to even lower levels than today, and to rapidly expand power generation from new and renewable energy. Despite that, the proportion of coal power generation is still much higher than other resources, and it is expected that the reliance on goal will maintain for next several decades. Under such circumstances, the development, supply, and expansion of clean coal technology (CCT) that is eco-friendly and highly efficient, is crucial to minimize the emission of pollutants such as carbon dioxide and fine dust, as well as maximize the energy efficiency. The Korean government designated the Yong-Dong Thermoelectric Power Plant in Gangneung to develop clean coal power generation, and executed related projects for three years. The current study aims to suggest a plan to develop parts, technologies, testing, evaluation, certification, and commercialization efforts for coal-fired power generation, In addition, the study proposes a strategy to vitalize local economy and connect the development with creation of more jobs.

Practical Issues in Application of RFID to Pipeline Construction and its Benefit Analysis

  • Yun, Ki Cheol;Oh, Chi Don;Cho, Nam Ho;Kim, Kyong Ju;Park, Chan Sik
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Radio Frequency Identification (RFID) has been applied to the construction industry for improving the efficiency of material and process management. Most RFID-related studies have focused on building or plant construction. The application of RFID has been limited in pipeline construction projects where materials are stored and stacked across a large construction site. This paper investigates practical issues in pipeline construction, improves the read rates of RFID tags, and tests their utility by putting them into practice. This paper demonstrates the benefits that may be expected with the use of improved RFID tags and the development of an automated pipeline construction management system. As a result, pipeline construction management time decreased by 28 hours per month compared to the conventional method. Cost decreased by about 26%.

Technical feasibility study for power generation from a potential mini hydro site nearby Shoolini University

  • Pundir, Anil;Kumar, Anil
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Small Hydro-Power (SHP) is an environmental friendly technology. Usually hydro power generation projects are viewed as constructing large dams and reservoirs but available new research and engineering techniques have helped hydro power generation without large dams and without large reservoirs. In India, there are several water installations, irrigation dams, canals, streams or running rivers not tapped to generate power. In these cases the existing system and facilities can help in generating power with less investment and time. This area is yet unexplored. Harnessing a stream for hydroelectric power is a major undertaking for the energy crises and the global issues to go green. In this technical note a potential site for mini hydro power plant nearby Shoolini University is identified and examined for the economic feasibility.

A Study on Deterioration Evaluation Method by Condition Monitoring and Diagnosis for Aging Oil-immersed Power Transformers (유입식 변압기의 상태진단을 통한 노후도 평가 방법)

  • Chang, Jeong-Ho;Lee, Sung-Hun;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.297-305
    • /
    • 2014
  • Nowadays new water supply projects have been on the decline as the water-power constructions have saturated, which means that the existing power equipment have slowly aged and they require more efforts to maintain the system performance. An effective asset management method of power equipment has become a great necessity from both economical and technical aspects. To be balanced, the asset management should look into all three parts: management, engineering, and information. The purpose of this paper is to study a Risk-Based Maintenance (RBM) matrix method through the deterioration evaluation algorithm for an efficient reliability assessment of oil-immersed power transformers by considering both asset management and technical evaluation. Make use of this result, the equipment will be decided to be replace or repair otherwise on service.

Integrated engineering environment for the process FEED of offshore oil and gas production plants

  • Hwang, Ji-Hyun;Roh, Myung-Il;Lee, Kyu-Yeul
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.49-68
    • /
    • 2012
  • In this paper, an offshore process front end engineering design (FEED) method is systematically introduced and reviewed to enable efficient offshore oil and gas production plant engineering. An integrated process engineering environment is also presented for the topside systems of a liquefied natural gas floating production, storage, and offloading (LNG FPSO) unit, based on the concepts and procedures for the process FEED of general offshore production plants. Various activities of the general process FEED scheme are first summarized, and then the offshore process FEED method, which is applicable to all types of offshore oil and gas production plants, is presented. The integrated process engineering environment is presented according to the aforementioned FEED method. Finally, the offshore process FEED method is applied to the topside systems of an LNG FPSO in order to verify the validity and applicability of the FEED method.

Development and Application of Sewer Facility Management System (하수도 시설 관리 시스템의 개발 및 적용)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.279-285
    • /
    • 1999
  • An integrated sewer management system was developed for the analysis of sewer flow and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue in order to construct user-friendly management system. The developed system was applied to a residential area in Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of sewer flow was implemented using RUNOFF, EXTRAN, TRANSPORT in SWMM. This system is now in the process of connection to the management system of watershed and surface environment in order to develope an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles, it could serve as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF