• Title/Summary/Keyword: Plant Parameters

Search Result 1,822, Processing Time 0.033 seconds

Chloromethylation of Naphthalene and Mathematical Planning of Experiment for Revealing Optimal Synthetic Conditions

  • V.V. Pak;R.K. Karimov;Kh.M. Shakhidoyatov;L.M. Yun;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.36-37
    • /
    • 2004
  • $\alpha$-Chloromethylnaphthalene is a valuable compound for obtaining of the plant growing stimulator - $\alpha$-napthylacetic acid. Chloromethylation of naphthalene by paraformaldehyde in the presence of glacial acetic acid, phosphoric and hydrochloric acids at temperature 80-85$^{\circ}C$ and duration - 6 hours the $\alpha$-chloromethyl-naphthalene yield was 55-57%. Using Box-Wilson method for mathematical planning of experiment carried out optimization of its synthesis for purpose increasing $\alpha$-chloromethylnaphthalene yield. Preliminary, one - factor experiments were carried out for selecting independence main parameters influencing on the synthesis. A full factor experiment of 2$^3$with extended matrix of planning was used for optimization. Aiming to increase the $\alpha$-chloromethylnaphthalene yield, the obtained mathematical model was used for program of sharp raising on the reply surface. The received optimal conditions for the $\alpha$-chloromethylnaphthalene synthesis were selected as following: molar ratio of naphthalene - parapfsormaldehyde of 1 : 2; temperature -105$^{\circ}C$; duration of the reaction -3 hours. The yield of $\alpha$-chloromethylnaphthalene under these optimal conditions was 75 %.

  • PDF

Measurement of missing video frames in NPP control room monitoring system using Kalman filter

  • Mrityunjay Chaubey;Lalit Kumar Singh;Manjari Gupta
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • Using the Kalman filtering technique, we propose a novel method for estimating the missing video frames to monitor the activities inside the control room of a nuclear power plant (NPP). The purpose of this study is to reinforce the existing security and safety procedures in the control room of an NPP. The NPP control room serves as the nervous system of the plant, with instrumentation and control systems used to monitor and control critical plant parameters. Because the safety and security of the NPP control room are critical, it must be monitored closely by security cameras in order to assess and reduce the onset of any incidents and accidents that could adversely impact the safety of the NPP. However, for a variety of technical and administrative reasons, continuous monitoring may be interrupted. Because of the interruption, one or more frames of the video may be distorted or missing, making it difficult to identify the activity during this time period. This could endanger overall safety. The demonstrated Kalman filter model estimates the value of the missing frame pixel-by-pixel using information from the frame that occurred in the video sequence before it and the frame that will occur in the video sequence after it. The results of the experiment provide evidence of the effectiveness of the algorithm.

Experimental study on vibration projection of seawater circulation pumps in nuclear power plant

  • Lin Bin;Huang Qian;Zhang Rongyong;Zhu Rongsheng;Fu Qiang;Wang Xiuli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2576-2583
    • /
    • 2024
  • In this paper, the similarity criterion and dimensionless conversion method combined with the elasticity condition and Hooke's law are used to derive the functional relationship of the maximum effective value of the vibration velocity between the prototype pump and the model pump. The seawater circulation pump of a nuclear power plant is used as the prototype pump, and the model pump is obtained by performance conversion and choosing the appropriate scale, and the vibration state of the model pump under different flow rates is measured and analyzed. The vibration data of the model pump through the function relationship to find out the vibration parameters of the prototype model pump, and compare with the vibration data of the seawater circulation pump in reality. It can be seen that with the increase of flow rate, the maximum effective value of the vibration velocity of both model and prototype decreases and then increases, and the relative error is small, the maximum value is 7.7757%. Therefore, it can be considered that the functional relationship of model pump converted to prototype pump derived in this paper can be used to analyze the vibration of the actual seawater circulation pump of coastal nuclear power plant.

Performance of Heritabilities, Genetic Correlations and Path Coefficients of Some Agronomic Traits at Different Cultural Environment in Sesame

  • Shim, Kang-Bo;Kang, Chul-Whan;Lee, Sung-Woo;Kim, Dong-Hee;Lee, Bong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.245-250
    • /
    • 2000
  • This study was conducted to analyze the responses of some agronomic traits to the different cultural environments and relations among the agronomic traits for selecting sesame varieties with higher cultural stabilities. The indexes for stability parameters measured were coefficient of variability, heritabilities, genetic correlations and path coefficients of agronomic traits according to locations and years in Korea. The heritabilities of agronomic traits showed different by locations and years. Number of seeds per capsule and 1000 seeds weight showed higher heritabilities, but stem length and seed weight per plant showed relatively lower heritabilities. Average heritabilities of some agronomic traits in 1998 were comparatively higher than those of 1999. Of six areas, Jinju area showed biggest coefficient of yield variability in 1998-1999. Iksan and Taegu areas showed higher heritabilities in 1998, but Iksan and Jinju areas showed lower heritabilities in 1999. Genetic correlations were slightly higher than corresponding phenotypic correlations. Stem length showed positive genetic correlation with the number of capsules per plant, and seed weight per plant and the number of capsule per plant showed positive genetic correlation with seed weight per plant. On the analysis of path coefficients, stem length and number of capsules effected highly on grain yield. Great regional variations were observed on the effects of agronomic traits on grain yield. Higher direct effects of stem length on grain yield were observed at Suwon, Chungwon, Taegu, Jinju and Naju areas, but in Iksan area was observed higher direct effect of the number of capsules per plant on grain yield in 1998. In 1999, higher direct effect of stem length on grain yield was observed at Chungwon and Suwon areas. Iksan and Taegu areas were also observed higher direct effect of the number of capsule per plant on grain yield.

  • PDF

Impact of Sulphur and Nitrogen Application on Seed and Xanthotoxin Yield in Ammi majus L.

  • Ahmad, Saif;Jamal, Arshad;Fazili, Inayat Saleem;Alam, Tanweer;Khan, Mather Ali;Kamaluddin, Kamaluddin;Iqbal, Mohd;Abdin, Malik Zainul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • Field experiments were conducted to determine the physiological and biochemical basis of the interactive effect of sulphur (S) and nitrogen (N) application on seed and xanthotoxin yield of Ammi majus L. Six treatments were tested ($T_1$ = control-without manure and fertilizers, $T_2$ = manure @ 9 kg $plot^{-1}-10\;t\;ha^{-1},\;T_3=A_0N_{50}K_{25}P_{25},\;T_4=S_{40}N_{50}K_{25}P_{25},\;T_5=S_{40}N_{100}K_{25}P_{25}\;T_6=S_{20+20}N_{50+50}K_{25}P_{25})$). Nitrate reductase (NR) activity and ATP-sulphurylase activity in the leaves were measured at various phonological stages, as the two enzymes catalyze rate-limiting steps of the assimilatory pathways of nitrate and sulphate, respectively. The activities of these two enzymes were strongly correlated with seed and xanthotoxin yield. The highest nitrate reductase activity, ATP-sulphurylase activity and xanthotoxin yield were achieved with the treatment $T_4$. Any variation from this treatment decreased the activity of these enzymes, resulting in a reduction of the seed and xanthotoxin yield in Ammi majus L. The higher seed and xanthotoxin yield achieved in Ammi majus L. at treatment $T_4$ could be due to optimization of leaf soluble protein and photosynthetic rate, as these parameters are Influenced by S and N assimilation.

Effects of Photoperiod and Shading on Growth and Yield of Licorice

  • Han, Sang-Sun;Kim, Yeon-Bok;Lee, Sang-Yong;Chang, Kwang-Jin;Lee, Han-Bum;Lee, Ki-Cheol;Park, Cheol-Ho
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.13-25
    • /
    • 2001
  • Growth and yield of licorice were investigated under the different conditions of photoperiod and shading in order to establish its cultural practice for the domestic production with the aim to substitute the import. The photoperiod was adjusted to 8,10, and 12 h by shielding plants from the light with blackout curtain. Large seedlings(11-20g) appeared to be affected by photoperiod since around 65 days. Most of growth parameters, including plant height, number of leaf, fresh and dry weight of plant and root, were the highest in 12 h photoperiod among all the photoperiod levels, excepting stem diameter which was the highest in 10 h photoperiod(4.5mm). Each photoperiod was similar to each other in root length and diameter. Small seedlings(4-l0g) showed a similar trend to large seedlings. The results from field photoperiod experiment demonstrated that 12 h photoperiod was also the best among three photoperiod treatments in plant height, stem diameter, number of leaf, root length, fresh and dry weight of plant and root. The effect of shading was tested under the three levels of control (0%), half-shading (55%), and full shading (90%). Shading remarkably suppressed the growth and yield, compared to no-shading. Although plant height and root length were little affected by the shading, stem and root diameters were heavily reduced.

  • PDF

A Risk Assessment for A Korean Standard Nuclear Power Plant (한국표준형 원전의 중대사고시 MACCS 코드를 이용한 위험성평가)

  • Hwang, Seok-Won;Jae, Moo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.189-197
    • /
    • 2003
  • The Level 3 PSA being termed accident consequence analysis is defined to assess effects on health and environment caused by radioisotopes released from severe accidents of nuclear power plants. In this study consequence analysis on health effects depending on release characteristics of radioisotopes has been peformed using the 3 MACCS code in severe accidents. The results of this study may contribute to identifying the relative importance of various parameters occurred in consequence analysis as well as to assessing risk reduction accident management strategies. Especially three parameters for the purpose of consequence analysis, such as the release height, the heat content, and the duration time, are used to analyze the variation of early fatalities and latent cancer fatalities. Also, in this study risk assessment using the concept, 'products of uncertainty and consequences', has been performed using consequence of MACCS and frequency on source term category 19 scenarios from IPE (Individual Plant Examination) analysis.

Mechanisms of Chilling Tolerance in Relation to Antioxidative Enzymes in Rice

  • Kuk, Yong-In;Shin, Ji-San;Whang, Tay-Eak;Guh, Ja-Ock
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.341-351
    • /
    • 2002
  • In order to examine the mechanistic basis for differential sensitivities to chilling and subsequent recovery between two rice (Oryza sativa L.) cutivars, a chilling-tolerant japonica type (Ilpumbyeo) and a chilling-susceptible indica type (Taebaekbyeo), changes of physiological responses and antioxidant enzymes were investigated. Both cultivars at 3 leaf stage were exposed at a low temperature of $5^{\circ}C$ for 3 days and subsequently recovered in a growth chamber at a $25^{\circ}C$ for 5 days with 250 mmol $m^{-2}$ $s^{-1}$. Physiological parameters such as leaf fresh weight, relative water content, cellular leakage, lipid peroxidation, and chlorophyll a fluorescence showed that the chilling tolerant cultivar had a high tolerance during chilling. However, the chilling-susceptible cultivar revealed severe chilling damages. The chilling-tolerant cultivar was also faster in recovery than the chilling-susceptible cultivar in all parameters examined. We analyzed the activity and isozyme profiles of four antioxidant enzymes which are: superoxide dismutase (SOD), caltalase (CAT), ascorbate peroxidase (APX), and glutation reductase (GR). We observed that chilling-tolerance was due to a result of the induced or higher antioxidant enzyme system, CAT and APX in leaves and SOD, CAT, APX, and GR in roots. Especially, we observed the most significant differences between the chilling-tolerant cultivar and -susceptible cultivar in CAT and APX activity. Also in isozyme profiles, CAT and APX band intensity in the chilling-tolerant cultivar was distinctively higher than in the chilling-susceptible cultivars during chilling and recovery. Thus, the cold stability of CAT and APX are expected to contribute to a tolerance mechanism of chilling in rice plants. In addition, the antioxidative enzymes activity in roots may be more important than in that of leaves to protect chilling damage on rice plants.

Evaluation of Operating Parameters of Reject Water Treatment System with Pilot-scale Biofilm Nitritation Plant at Field Condition (반류수처리를 위한 현장 pilot plant 생물막 아질산화 반응조에서 운전인자 평가)

  • Han, Jinhee;Kwon, Min;Han, Jonghun;Yun, Zuwhan;Nam, Haiuk;Ko, Joohyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.636-641
    • /
    • 2007
  • A pilot-scale biofilm nitiritation reactor was operated with the reject water from a large wastewater treatment plant. The effects of various operating parameters including pH, temperature, dissolved oxygen, solids and organic concentrations were examined. A stable nitritation was achieved at operating pH range of 7.3 to 8.8 with an alkalinity addition. Higher operating temperature of $35{\pm}0.7^{\circ}C$ achieved more stable nitritation compared to $30{\pm}0.2^{\circ}C$. It has been noticed that nitrite accumulation maintained with DO, solids and organic concentrations range of 0.8 to 3.9 mg/L, 3,400 to 11,000 mg/L, and 86 to 572 mg/L, respectively. It seems that the accumulation of nitrite was caused by both the inhibition of $NO_2{^-}$ oxidizers due to free ammonia and the maintenance of the high operating temperature of $35^{\circ}C$ which promote to accumulate the $NH_4{^+}$ oxidizers in the reactor. According to microbial community analysis of fluorescence in situ hybridization and INT-Dehydrogenase measurements, more nitrifiers were presented in attached form compared to suspended growth.

Intelligent Tuning Of a PID Controller Using Immune Algorithm (면역 알고리즘을 이용한 PID 제어기의 지능 튜닝)

  • Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.8-17
    • /
    • 2002
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems with a less flexible result to the external behavior. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. In addition to that, tuning performance cannot be guaranteed with regards to a plant with non-linear characteristics or many kinds of disturbances. Along with these, this paper used immune algorithm in order that a PID controller can be more adaptable controlled against the external condition, including moise or disturbance of plant. Parameters P, I, D encoded in antibody randomly are allocated during selection processes to obtain an optimal gain required for plant. The result of study shows the artificial immune can effectively be used to tune, since it can more fit modes or parameters of the PID controller than that of the conventional tuning methods.