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ABSTRACT

Using the Kalman filtering technique, we propose a novel method for estimating the missing video
frames to monitor the activities inside the control room of a nuclear power plant (NPP). The purpose of
this study is to reinforce the existing security and safety procedures in the control room of an NPP. The
NPP control room serves as the nervous system of the plant, with instrumentation and control systems
used to monitor and control critical plant parameters. Because the safety and security of the NPP control
room are critical, it must be monitored closely by security cameras in order to assess and reduce the
onset of any incidents and accidents that could adversely impact the safety of the NPP. However, for a
variety of technical and administrative reasons, continuous monitoring may be interrupted. Because of
the interruption, one or more frames of the video may be distorted or missing, making it difficult to
identify the activity during this time period. This could endanger overall safety. The demonstrated
Kalman filter model estimates the value of the missing frame pixel-by-pixel using information from the
frame that occurred in the video sequence before it and the frame that will occur in the video sequence
after it. The results of the experiment provide evidence of the effectiveness of the algorithm.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

ndustrial automation systems of NPP play a crucial role in
monitoring and controlling critical process parameters and
ensuring the overall safety of the plant [1,2]. NPP rely on systems to
conduct routine inspections and monitoring of the key components
of the reactor in order to assess its health and safety. There is an
increasing need for more thorough information on inspection and
monitoring as power plants get older and their components
degrade relative to the early start-of-life settings. The systems and
components of NPP systems are regularly monitored and regulated
by plant operators to ensure that everything is running as intended.
NPP main control room (MCR) has had three generations of design
implemented over the course of thirty years. The increased use of
computer-based systems to monitor and operate facilities is a sig-
nificant breakthrough in MCR design [3]. On screens driven by
computers, the vast majority of the information has been provided.
There is no need for physical components in the “soft” control
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room, which is used to present and control the plant. An interactive
human-system interface (HSI) enabled by video display devices
may now monitor and handle most operations in addition to higher
computerization levels. Operator activities transition toward
knowledge-based activities as analog systems are gradually
replaced by digital technologies for routine control and safety op-
erations of NPP. Operator training in the future will be more focused
on understanding the system response to system problems. The
establishment of effective teams may entail the education of all
employees on the roles and duties of their coworkers. Seven of the
eight nuclear power plants in UK use Advanced Gas-cooled Re-
actors (AGR). Around 20% of the country's yearly electricity needs
are met by these AGRs. Central to the AGR facility is an enormous
control room with hundreds of graphite-brick cylinder pipes at its
core. The control rods can be put into these channels, which hold
the fuel. Video cameras are among the sensors used in specialized
equipment and tools used for inspecting certain fuel routes. The
camera collects video of the interior wall of the fuel channel from
six different perspectives, some of which overlap with one another,
for remote visual inspection (RVI) [4]. Recent years have seen a lot
of research and development into the practice of monitoring of the
people activities in public or controlled settings for safety or
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security reasons. Surveillance video can be used for a wide range of
purposes. For example, the motions and interactions of the persons
in the video, as well as the items they carry or leave behind, can all
be utilized to detect suspicious activity. By looking at the items,
they leave behind or the things they bring with them. In order to
monitor a target, a vision camera was utilized by a real-time object
tracking system based on vision. It is possible for the monitored
object to be one or more in number. It is done by analyzing video
frames sequentially to identify and track objects. Background
removal algorithm is used to identify moving items in each frame
before they may be tracked across many frames. In order to keep
track of the moving objects, the tracking algorithm employed the
data from the detection stage. However, relying entirely on mea-
surements generated at the detection stage is not safe due to the
inefficient algorithm performance or limitations. As a result, the
Kalman filtering technique can be altered to adjust for fluctuations
and missing measurements whenever the detection stage fails.
Based on the identified object's center position and velocity, the
missing data is estimated. Jorge, Carlos Alexander F. et al. [5] pro-
vide a full explanation of surveillance methods and applications.
Video surveillance equipment is used to monitor the NPP control
room and look for any indicators of human activity that would
impact the safety and security. If for any reason, a single frame of
the inspection video is corrupted or disappears during the process
of monitoring the control room of the nuclear power plant, the
inspection process would be severely impacted. In order to get
accurate measurements of the missing or broken frames, it is
necessary to have a dependable procedure.

Video monitoring is now widely employed in many other sec-
tors such as industry, science, manufacturing, education, e-
conferencing, detective work, crime, medicine, etc. such as to
measure physiological parameters like heart rate (HR), respiratory
rate (RR), heart rate variability (HRV), blood pressure, and oxygen
saturation [6]; to monitor and control modern smart grids to ensure
efficient and reliable operation [7]; fabric texture analysis; in-
spection of automotive rubber profiles; rail heads; length mea-
surement of metallic wire ropes; defect detection of the weld bead;
alignment of texture patterns for the design of Japanese kimono
cloth [8].

Missing frames in the video are often measured by comparing
nearby ones’ spatial and temporal information to the missing
frames themselves. The missing frames can be identified using a
variety of motion estimate techniques. BMME, or block-matching
motion estimation, is a popular method for identifying the
optimal block match. Search patterns are exploited by the BMME
algorithms. Motion information can be recovered from compressed
video streams using a variety of techniques. It is possible to disguise
errors using relatively simple techniques, such as bi-linear inter-
polation [9]. These pixels are extrapolated from nearby undamaged
pixels to fill in any missing areas. Creating new pixels in space and
time from a variety of input frames is the goal of many different
video interpolation and extrapolation tasks. Three activities in
particular have received a lot of attention in the last few years. The
first challenge is termed general video inpainting, and it involves a
video that has been provided with random voxels (Spatio-temporal
pixels) that need to be filled in with the proper value. Interpolation
of one or more frames between two input frames (usually
consecutive) is known as frame interpolation. The objective of this
task is to count the number of consecutive frames that appear is
known as video prediction. The goal is to forecast the appearance of
a large number of future frames using a collection of input frames
[10]. In addition to motion compensation interpolated frames,
another way to estimate forward and backward motion vector
fields is to use unidirectional motion estimation. These two inter-
polated frames are then utilized to form an intermediate frame, and
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the accuracy of each pixel is evaluated based on the results of this
frame. Finally, some researchers utilize a trilateral filter to denoise
the initial estimation and fix any flaws that may have occurred [11].
Environmental monitoring requires the use of the wireless multi-
media sensor network or WMSN. The network can be envisioned as
a multi-view video system when the sensors are used as cameras.
While multi-view videos are being wirelessly transmitted, packet
loss is a possibility. When video frames are dropped during trans-
mission, the decoder must employ a frame reconstruction tech-
nique to calculate the number of missing pixels. In this
circumstance, deep learning-based techniques are used to imple-
ment an algorithm for the reconstruction of the lost frame [12].
There are several theories. When utilizing the Bayesian frame-rate-
up-conversion technique, the intermediate frame can be calculated
using the maximum aposteriori probability method. The interme-
diate frame can be measured using this technique, which includes
both a temporal motion model and a spatial image model in the
optimization criterion. The motion model represents the spatial
structure of neighboring pixels, while the image model describes
the temporal correlation of pixels along motion trajectories. The
collection of motion hypotheses is generated by using numerous
“ideal” motion trajectories rather than just one. The motion-
compensated interpolations obtained by all of these multiple mo-
tion hypotheses are adaptively combined according to the reli-
ability of each hypothesis to provide an accurate measurement for
the pixels in missing intermediate frames [13]. In this research, we
offer a novel method to measure the missing frames, pixel-by-pixel,
in a given video file, which records the activity in the NPP control
room. The technique entails taking the frames out of the video clip,
leaving out part of them, and keeping the rest.

The structure of this manuscript is as follows: Section 2 de-
scribes the related work with its advantages and limitations. A
short mathematical review of the Kalman filter is given in section 3.
Section 4 describes the Kalman filter algorithm, and Section 5
presents the proposed methodology. In Section 6, the validation
of the proposed methodology is given in detail. Section 7 brought
out the conclusions.

2. Related work

In order to estimate the missing pixels in the frame, decoders
are used during the measurement procedure. When B.Yan et al. [9]
developed a hybrid frame concealment methodology for H.264/
AVC, they addressed the difficulties that emerge from employing
pixel-based motion vector estimation. The main disadvantages of
this approach are the high computing costs and a need to specify a
block matching threshold. In video frame inpainting, Ryan Szeto
etal. [10] created a temporally-aware interpolation network. Frame
interpolation, video prediction, and generic video inpainting all
come together in this study to form a task called video frame
inpainting. This strategy can result in hazy images, especially if the
camera is moving quickly. Using a trilateral filtering technique, Ci
Wang et al. [11] came up with a way to increase the frame rate.
Moving the frames of the closest neighbor in both the preceding
and subsequent directions using motion vectors measured in be-
tween the frames is used in this method to anticipate two inter-
polated frames. The accuracy of the original interpolated frame and
its pixels is then estimated using these two predictions. Once the
problematic pixels have been repaired, a trilateral filter is applied to
the image to fill in all of the missing pixels. When estimating uni-
directional motion, the search approach, block matching criteria,
and block size all play an important role. Ting-Lan Lin et al. [12]
presented a method based on multilayer perceptron regression for
reconstructing missing frames in multi-view films in wireless
multimedia sensor networks. In addition, a new inpainting



M. Chaubey, LK. Singh and M. Gupta

technique is proposed, which makes use of the optical flow algo-
rithm data as well as frames in the immediate vicinity.

An adaptive fusion of motion-compensated interpolations is
proposed by Hongbin Lu et al. [13] to present a multiple hypothesis
Bayesian frame rate up-conversion strategies for forecasting the
intermediate frame with the highest probability of aposteriori.
However, this procedure is more time-consuming than other
methods. For video frame interpolation, Wang Shen et al. [14]
proposed employing a recurrent network to account for spatial
degradations. Longer sequences can not be processed easily
because of the lengthy and complicated training procedure that
goes along with a recurrent neural network.

Xiaozhang Liu et al. [15] proposed an optical flow estimation-
based video frame interpolation method with image inpainting.
Based on a combined local and global total variation (CLGTV) op-
tical flow estimate model, the optical flow between input frames is
analyzed. They also addressed video frame interpolation and opti-
cal flow estimation. After that, the optical flow is employed to
create the intermediate frames, which are subsequently displayed.
A nonlocal self-similarity between video frames is then used to
resolve the pixel loss area in an interpolated frame. These addi-
tional frames bring the overall frame count up to the necessary
number. A typical problem in optical flow estimation is that it is not
always possible to accurately detect fine motion structures, espe-
cially in regions with considerable and abrupt displacement
fluctuation.

For highly corrupted H.264/AVC videos, Shihua Cui et al. [16]
suggested an error concealment model, based on Kalman filtering
(KF). This algorithm utilized a modified bilinear motion field
interpolation (MFI) method to reconstruct both the missing and
unexpected motion vectors (the “minority”). It is possible that an
unscented Kalman filter might be used instead of the current
framework for videos with non-linear motion since the KF pre-
diction is not dependent on the loss rate.

Avinash Paliwal et al. [17] proposed hybrid imaging system-
based deep slow-motion video reconstruction technique. A deep
learning system for interpolating video frame data was proposed
that made use of a hybrid imaging approach. For the purpose of
correcting the loss of temporal information included in the original
video, a high frame rate video with the limited spatial resolution
was used. This approach was unable to make use of the data in the
auxiliary frames because of the poor resolution at which they were
collected.

Visual misperception can be eliminated using an efficient tem-
poral error concealment approach (ETEC) developed by Xingang Liu
et al. [18]. For H.264/AVC inter-frame decoding, this paper
employed four 4 x 4 blocks (HVS). The MV of the lost macroblock
(MB) can be reconstructed by interpolating data from nearby un-
damaged MBs based on geometry and other mathematical tech-
niques. Error detection is improved (EC). Block-matching criteria
and a lot of processing are required to use this strategy. Wenbo Bao
et al. [19] suggested a method for interpolating video frame data
based on motion estimation and compensation-driven neural
networks. An adaptive warping layer that integrates optical flow
and interpolation kernels have been designed such that target
frame pixels can be generated using this layer. Due to the fact that
this layer is fully differentiable, it allows the flow and kernel esti-
mation networks to be optimized in tandem. Rather than relying on
hand-crafted features, the recommended model uses motion esti-
mation and compensation methodologies to achieve its goals. With
global motion compensation, it is impossible to accurately depict
moving objects within a frame. The importance of motion esti-
mates at the local level follows directly from this.

Yasuyuki Matsushita et al. [20] came up with a method for
completing and deblurring videos. It has been proposed that
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motion inpainting can be used as a new and effective method for
producing stabilized videos. In order to seamlessly patch together
images, a technique called motion inpainting enables the trans-
mission of motion into blank portions of the image. Instead of
calculating point spread functions, they found a deblurring method
that transfers and interpolates sharper pixels from adjacent frames
(PSFs). The recommended completion strategy relies on motion
inpainting to provide implicit assurances of spatial and temporal
coherence. The motion inpainting technique can be used to check
for consistency. The smoothness of the extrapolated optical flow
ensures the smoothness of the spatial continuity of the image stitch
indirectly. Furthermore, optical flow from neighboring frames
provides temporal consistency in both static and dynamic areas. A
global motion estimate is used in this method, which can yield
erroneous findings when a moving item occupies a large section of
the image. It is feasible for local motion measurements to be
erroneous when dealing with objects that are moving swiftly.
When dealing with things moving at high speeds, the limits of
measuring local motion might lead to erroneous results.

Yonatan Wexler et al. [21] came up with a model for filling in
missing information based on the idea of local structures. To solve
the completion problem, it first turns it into a global optimization
problem with a clear objective function, and then it creates a new
algorithm to solve the problem. The usage of reference examples
restricts the number of missing values that can be incorporated into
cohesive structures. They employ this cutting-edge technology to
create substantial “holes” in video sequences showing dynamic and
complex circumstances in terms of space and time. Spatiotemporal
patches from other areas of the video are sampled to fill in the gaps
while maintaining global spatiotemporal consistency between all
of the patches that are located in or around the hole. No attempt is
made to merge identical pixels from the same (static) area of the
scene in the method provided here. Because of this, video clips and
images appear to have been recorded in real-time.

3. A short mathematical review of the Kalman filter

A well-known technique for predicting the state variables of a
system, the Kalman filter is applied to make such predictions.
Various measurements (collected over time) that have variable
degrees of uncertainty [22—25] are used to derive the model of the
system. This algorithm was developed in order to solve the more
general problem of estimation of state xR" of a discrete time-
controlled process governed by the linear stochastic difference
equation:

Xier1 = AXy + Brtty + wy, (1)
With measurement zeR™ that is
zi =Hixp + vy (2)

Here the process noise and the measurement noise are given by the
random variables wy and vy, respectively. It is assumed that they
are independent of each other, and are white with their probability
distributions being normal.

i.e.

p(w) ~N(0,Q) (3)

p(v) ~ N(O,R) (4)

The n x n matrix A in the difference equation (1) establishes a
relationship between the state of the system at the time step k and
the state of the system at the time step k + 1 without the influence
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of the process noise or a driving function. The control input u< R' is
related to the state x by the n x 1 matrix By. The mx n matrix H
establishes a relationship between the state and the measurement
7, within the context of the measurement equation (2).

Now, we can define X, €R" as our apriori state estimate at step
k based on our knowledge of the process prior to step k, and Xy €
R" as our aposteriori state estimate at step k given measurement z;.
X €R" is our apriori state estimate at step k based on the
knowledge of the process prior to step k. The apriori and aposteriori
estimate errors can thus be defined as the following:

ey=x, — X, -and-e=x;, — Xy,

The apriori estimate error covariance is then

= 5T

Pk =E [ekek]
And the aposteriori estimate error covariance is

Pk:E[ekeH (6)

To derive the equations of the Kalman filter, we first set out with
the objective of finding an equation that computes an aposteriori
state estimate X, as a linear combination of an apriori estimate X
and a weighted difference between an actual measurement z, and a
measurement prediction HyX; . This is demonstrated in equation
(7)

ik = 5(\11 + K(Zk — Hkilz)

(7)

The measurement innovation, also known as the residual, is the
difference in the equation (7) represented by (z, — HyX ). The
residual is a measure of the deviation from the predicted mea-
surement Hy X, that exists between the actual measurement z; and
the prediction. If there is no residue, then this indicates that both of
these statements are accurate.

Because it results in the lowest aposteriori error covariance, the
m x n matrix K in equation (7) is selected to be the gain or blending
factor (6). This minimization can be accomplished by first
substituting equation (7) into the above definition for ey, then
substituting that into equation (6), performing the indicated ex-
pectations, taking the derivative of the trace of the result with
respect to K, setting that result equal to zero, and then solving for K.
This procedure can be repeated as many times as necessary to
achieve the desired level of minimization. The following is an
example of a form of the resulting K that minimizes equation (6):

-1
Ky :PI;HIZ (HkPI;HIZ + Rk)

— T
Pka

= (8)
HyP, Hf + Ry

By looking at equation (8), we can see that the gain K weights
the residual more heavily as the measurement error covariance Ry
gets closer and closer to zero. Specifically

lim K, = H; !
Koo Kk

On the other hand, as the aposteriori estimate error covariance
P, approaches zero, the gain K weights the residual less heavily.
Specifically
lim K, =0
-0

k
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Another way of thinking about the weighting by K is that as the
measurement error covariance R, approaches zero, the actual
measurement z;, is trusted more and more, while the predicted
measurement Hyx), is trusted less and less. On the other hand, as
the apriori estimate error covariance P, approaches zero the actual
measurement z;, is trusted less and less, while the predicted mea-
surement H,X,, is trusted more and more [26].

4. Kalman filter algorithm

The Kalman filter is a method for estimating a process that
makes use of feedback control. Specifically, it makes an estimate of
the state of the process at a particular time and then takes input in
the form of (noisy) measurements. As a consequence of this, the
equations used by the Kalman filter can be broken down into two
categories: time update equations and measurement update
equations. In order to generate a priori estimates for the subse-
quent time step, the time update equations are responsible for
projecting the current state and error covariance estimates ahead
(in time). The measurement update equations are responsible for
handling the feedback, which refers to the process of including a
new measurement in the a priori estimate in order to obtain an
improved aposteriori estimate. The equations used to update the
time can also be referred to as predictor equations, while the
equations used to correct the measurements can be called corrector
equations. In point of fact, as can be shown in Fig. 1, the ultimate
method of estimation is rather similar to a predictor-corrector
approach to the resolution of numerical issues.

The specific equation for the time and measurement updates is
given below.

Time update equations

Xir1 = AxXg + By 9)
Py =APiAL + Qo (10)
Measurement update equations
— T — T -1
Ki =Py HE (HiPic HE + Ry (11)
?k:?I; +K(Zk7Hk5(\]?) (12)
Py = (I = KiHy) Py, (13)

During the initial phase of the measurement update, the Kalman
gain is calculated. It is important to note that equation (11) is
exactly the same as equation (8). The following step is to take

Time update
(“Predictor™)

Measurement Update
(“Corrector™)

Fig. 1. Kalman filter cycle.
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measurements of the procedure in order to get it, and then develop
a aposteriori state estimate by factoring in the measurements using
the equation (12). For the sake of completeness, equation (12) is
just a repetition of equation (7) here. Calculating an aposteriori
error covariance estimate is the final stage, and it may be done with
the help of equation (13).

5. Proposed methodology

To estimate the missing frames in an NPP control room moni-
toring video, we offer a new pixel-by-pixel Kalman filter algorithm
that we devised. The method's flowchart is shown in Fig. 2, and the
algorithm is detailed in Table 1. Kalman filter is well-suited to
systems that are subject to rapid evolution. When it comes to real-
time and embedded systems, they are ideal since they are light on
memory because they do not need to maintain any history other
than the prior state.

Let us have a video signal represented by: x[nq,ny, k], where n;
and n, are the spatial coordinates, and k is the temporal compo-
nent. After the completion of the video capturing process, each
frame is extracted. Let there are n frames, denoted by fi.f5,........... ,
fn- The following three frames, from the extracted frames, f1,f, and
f3, are considered for this analysis as shown in Fig. 3. The content of
the frame f, has been removed on purpose. A new video is now
obtained, in which one frame is missed. Using the frames that came
before and after it, f; and f3, respectively, the Kalman filter is uti-
lized to measure the value of the missing frame f,. In addition, the
following model is implemented by the application of the Kalman
filter in order to measure the missing frame. Using the state tran-
sition equation (9), we model the transition of the pixels from the
previous frame to the next frame or from the next frame back to the
previous frame. Our observed frame is the frame at time k that was
measured beforehand, and the observation model is represented by
equation (2). The weight that is attributed to the measurements
and the current-state estimate is referred to as the Kalman-gain,
and it is something that may be “tuned” in order to attain specific
performance. When the gain of the filter is high, the most recent
measurements are given more weight, and as a result, the filter
adapts to them more quickly. In accordance with our methodology,
the Kalman gain can be computed by equation (11). With the
assistance of Kalman gain, we are able to measure the output using
the missing frame by equation (12). Following the computation of
the measured frame, an update to the error covariance is performed
utilizing equation (13).

6. Validation of the proposed methodology

We conduct our experiments using the MATLAB video file titled
“NPP_C.mp4”, which has a total of 209 frames. This is done so that

Input video Frame Frame
extraction deletion
Calculation ..
Update | ofKalman |« Imtlal
estimate . estimate
gain
v

Updgte N Project into

covariance k+1

Fig. 2. Flow chart of the proposed methodology.
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Table 1
Proposed algorithm.

Input Video signal x[ny,n,, k]

Extract the frames
Select three consecutive frames f{,f, and f3
Delete frame f ;
Estimation of retrieved frame using Kalman filter
Initialize state
Initialize error covariance p =0
Initialize the Gaussian measurement noise R
Initialize Gaussian process noise Q
forj = 2 : number of rows
for k = 2 : number of columns
forf=2:2do
Calculate the previous frame f — 1
Calculate the Kalman gain
P
PR
Calculate the retrieved frame
Xy = X + Ky (Zy — HRy)
Calculate the updated error covariance
P = (1 - Kp)P, +Q
endfor
end for
end for
Retrieved frame

Step-1
Step-2
Step-3

Step-4

K, =

Output

Frame 1
Frame 2
Frame 3

Fig. 3. Three consecutively selected frames.

we can verify that the suggested approach is effective. In MATLAB,
we read a video file that was downloaded from Google by using the
VideoReader function, which in turn returns a VideoReader object.
The object property can be utilized to access a variety of video-
related details, including the duration, number of frames, frame
rate, and so on. Now we take every single frame from the video and
extract it, but we only take the three frames that come immediately
after each other as seen in Fig. 4. The selected frames have a
dimension of 720 x 1280 x 3 uint.

The second frame from the selected frames is deleted. Fig. 5
shows the missing frame. Our objective is to measure the missing
frame.

In order to measure the missing frame, we utilize the Kalman
filter with an initial error covariance of zero, the prior frame as the
initial state, Gaussian measurement noise with a R value of 23, and
Gaussian noise process with a Q value of 2-6. The measured portion
of the lost frame is depicted in Fig. 6. The numerous aspects of
performance are broken down in Table 2 below. For the purpose of
conducting a quantitative performance evaluation of the suggested
procedure, we computed four performance evaluation parameters.
The outcomes are as described below:

6.1. Structural similarity index

The structural similarity index, often known as SSIM, is a
perceptual metric that assesses the deterioration in image quality
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First frame

second frame
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Third frame

Fig. 4. Three consecutively selected frames.

Missing frame

Fig. 5. Missing frame.

Retrieved frame

Fig. 6. Retrieved frame.

that occurs as a result of processing, such as the compression of
data or the loss of data during transmission. It is a full reference
metric that requires two images, a reference image and a processed
image from the same image capture. These images must come from
the same image capture. In the algorithm that we have proposed,
the value of SSIM is calculated to be 0.9760. When the SSIM is closer
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Table 2

Performance evaluation metrics.
Performance evaluation parameters Minimum Maximum
SSIM 0.9760 0.9760
PSNR 37.8856dB 37.8856dB
Coefficient of correlation 0.9988 1
Error 0.9548% 1.6166%
Sum of squared difference (SSD) 212300756 212300756

to 1, the image quality is considered to be higher.

6.2. Peak signal-to-noise ratio

The peak signal-to-noise ratio (PSNR) of two images can be
calculated using the PSNR and expressed in decibels. The quality of
the image can be determined by comparing the original image to a
compressed or recovered version of the image using this ratio. As
the PSNR value goes up, the image's quality, whether it was com-
pressed or recovered, gets better. The PSNR ought to be as high as is
practicable. Regarding our situation, the value of PSNR is deter-
mined to be 37.8856dB.

6.3. Mean squared error

The difference between the retrieved image and the original
image, measured in terms of the mean squared error, is referred to
as the mean square error (MSE). The mean square error can be used
in a number of different ways to quantify the differences that can
exist between the values that are inferred by an estimate and the
actual quality that is being certified. The mean squared error, or
MSE, is a risk function that represents the expected value of the
squared error. When calculating the MSE, which stands for the
mean squared error, one must take into account both the variance
and the bias of the estimate. If the MSE value is smaller, the result is
considered to be of higher quality, but if the MSE value is larger, the
result is considered to be of worse quality. Within the framework of
the algorithm that we have suggested, the minimum value of MSE
is 0.9548 % and the highest value is 1.6166 %.

6.4. Correlation

Correlation is a method for determining the degree of
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Fig. 7. Missing frame and its equivalent histogram.

probability that two measured quantities have a linear relationship.
It is denoted by r and can be calculated as follows:

pe 2% — Xm)(Yi — Ym)
Vi — xm)? i — Ym)?

Where x; and y; are intensity values of ith pixel in the first and

Retrieved frame

Murnber of pixels

second frames respectively. Also X, and y,, are mean intensity
values of the first and second image respectively. If two images are
identical, the correlation coefficient is r = 1, r = 0 if they are fully
uncorrelated, and r = —1 if they are completely anti-correlated. Our
proposed algorithm gives the minimum and maximum correlation
coefficients of 0.9988 and 1, which indicates a good correlation
between the deleted frame and the retrieved frame.

Histogram of Retrieved frame
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Fig. 8. Retrieved frame and its equivalent histogram.
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Fig. 9. Overlapped histogram of the missing frame and retrieved frame.

6.5. Histogram comparison

A histogram comparison of the missing frame and the retrieved
frame is shown in Fig. 7 and Fig. 8 respectively. In addition, we
plotted the overlap between both of the histograms in order to
visualize the resemblance between the frame that was lost and the
frame that was retrieved which is shown in Fig. 9. The sum of the
square difference (SSD) between the missing frame and the
retrieved frame is (212300756).

7. Conclusion

In this paper, we offer a new method for determining the video
frame that is missing from a video. To ensure the safety and security
of the NPP control room, it is essential to adopt this kind of video
surveillance monitoring. Using a video file of the NPP control room,
we begin by selecting three consecutive frames. Our solution is
demonstrated by removing the center frame of the video. Using the
frames that came before and after it, we may make an educated
guess at the estimation of the missing frame in the last stage of the
process. We use a technique called Kalman filtering. The previous
frame is used as the initial state in this approach, the initial error
covariance is assumed to be zero, and both initial Gaussian mea-
surement noise and Gaussian process noise are assumed to be
present. The error covariance is likewise assumed to be zero at the
start of the procedure using this method. As a result, it generates
iterative estimates of the missing frame using Kalman filtering. The
outcomes of the experiments support the validity of the method-
ology that was proposed.
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