• Title/Summary/Keyword: Plant Parameters

Search Result 1,825, Processing Time 0.025 seconds

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF

Effects of Postharvest Treatments of Calcium, Lysophosphatidyl ethanolamine (LPE), and 1-Methylcyclopropene (1-MCP) on the Fruit Quality during Simulated Marketing in Asian Pears (Pyrus pyrifolia Nakai) (모의유통 환경에서 동양배 품질에 미치는 수확 후 칼슘, Lysophosphatidyl ethanolamine (LPE), 1-Methylcyclopropene (1-MCP) 처리의 영향)

  • Lee, Ug-Yong;Choi, Jin-Ho;Lee, Jin-Wook;Kim, Joonyup;Kim, Ui-Dong;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.312-318
    • /
    • 2018
  • We investigated the effect of postharvest treatments of calcium chloride, lysophosphatidyl ethanolamine (LPE) or 1-methylcyclopropene (1-MCP) on fruit quality during simulated marketing in Asian pear (Pyrus pyrifolia Nakai). 'Whangkeumbae' pear fruits were immersed in 0.25, 0.5 or 1.0% $CaCl_2$ solution with or without ultrasound (40kHz) at $25^{\circ}C$ for 3min followed by storage at $1^{\circ}C$ for 30 days simulated as abroad exportation. After simulated marketing at $25^{\circ}C$ and 80% relative humidity (RH) up for 10 days, quality parameters were evaluated. Results indicated that the ultrasound and $CaCl_2$ treatment had a synergic effect on keeping the green skin color which showed lower $a^*$ value. The combination treatment of ultrasound and 0.5% and 1.0% $CaCl_2$ significantly reduced internal browning disorders, although severe skin blemish disorder (20-23%) occurred in 1.0% $CaCl_2$ treatment. 'Wonhwang' pears were immersed in 1,000ppm LPE for 3 minutes or were fumigated in 1,000 ppb 1-MCP for 12 hours, respectively. The results of the fruit quality survey during the 21 days of distribution period are as follows. The 1-MCP treatment was maintained at a constant flesh firmness of 33N or higher during the distribution period. The LPE treated fruits had a lower physiological disorder index than the untreated group, but showed a relatively higher value than the 1-MCP treated group. In the case of 1-MCP treatment, the fruit respiration rate was significantly lower than of untreated control ($6.0mL{\cdot}kg^{-1}{\cdot}hr^{-1}$) during the simulaed marketing period. Consequently, it was expected that the postharvest treatments of 0.5% calcium chloride in pararell with ultrasound and 1-MCP fumigation can help to maintain Asian pear quality during distribution period.

Change in Potential Productivity of Rice around Lake Juam Due to Construction of Dam by SIMRIW (벼 생장모형 SIMRIW를 이용한 주암호 건설에 따른 주변지역의 벼 잠재생산성 변이 추정)

  • 임준택;윤진일;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.729-738
    • /
    • 1997
  • To estimate the change in rice productivity around lake Juam due to construction of artificial lake, growth, yield components and yield of rice were measured at different locations around lake Juam for three years from 1994 to 1996. Automated weather stations(AWS) were installed nearby the experimental paddy fields, and daily maximum, average and minimum temperature, solar radiation, relative humidity, and precipitation were measured for the whole growing period of rice. Plant height, number of tillers, leaf area and shoot dry weight per hill were observed from 8 to 10 times in the interval of 7 days after transplanting. Yield and yield components of rice were observed at the harvest time. Simulation model of rice productivity used in the study was SIMRIW developed by Horie. The observed data of rice at 5 locations in 1994, 3 locations in 1995 and 4 locations in 1996 were inputted in the model to estimate the unknown parameters. Comparisons between observed and predicted values of shoot dry weights, leaf area indices, and rough rice yield were fairly well, so that SIMRIW appeared to predict relatively well the variations in productivity due to variations of climatic factors in the habitat. Climatic elements prior to as well as posterior to dam construction were generated at six locatons around lake Juam for thirty years by the method of Pickering et al. Climatic elements simulated in the study were daily maximum and minimum temperature, and amount of daily solar radiation. The change in rice productivity around lake Juam due to dam construction were estimated by inputting the generated climatic elements into SIMRIW. Average daily maximum temperature after dam construction appeared to be more or less lower than that before dam construction, while average daily minimum temperature became higher after dam construction. Average amount of daily solar radiation became lower with 0.9 MJ $d^{-1}$ after dam construction. As a result of simulation, the average productivity of habitats around lake Juam decreased about 5.6% by the construction of dam.

  • PDF

Development of n Hydroponic Technique for Fruit Vegetables Using Synthetic Fiber Medium (합성섬유 배지를 이용한 과채류 수경재배 기술 개발)

  • Hwang Yeon-Hyeon;Yoon Hae-Suk;An Chul-Geon;Hwang Hae-Jun;Rho Chi-Woong;Jeong Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.106-113
    • /
    • 2005
  • This study was carried out to develop a novel hydroponic medium far fruit vegetable crops by using waste synthetic fibers. In physical analysis of the synthetic fiber medium (SFM), the bulk density and percent solid phase were lower, while the porosity and water content were greater in comparison with the rockwool slab. The SFM had pH of 6.5 and EC of $0.03dS{\cdot}m^{-1}$ both of which are similar to those of the rockwool slab. The CEC of 0.39me/100mL of the SFM was lower than compared with 3.29me/100mL of the rockwool slab. However, concentrations K, Ca, Mg and Na were slightly higher in the SFM than those in the rockwool slab. The 'Momotaro' tomato crop in the SFM gave comparable plant height, stem diameter, days to first flowering, fruit weight and percent marketable yield as the rockwool slab. In the SFM and in the rockwool slab, mean fiuit weight were 182g and 181g, percent marketable yield were $93.8\%$ and $92.0\%$, respectively. The marketable yield per 10a in the SFM was 12,799 kg, which was $97\%$ of that in the rockwool slab. Growth parameters such as leaf length and width, leaf number, stem diameter and chlorophyll content of an exportable cucumber crop grown in the SFM and the rockwool slab were not different. Fruit weight was greater in the rockwool slab, while percent marketable yield was greater in the SFM. The marketable fruit yield per 10a of 5,062kg in the SFM was $2\%$ greater than that in the rockwool slab. $NO_3$ concentration in nutrient solution during the crop cultivation was higher in the SFM than in the rockwool slab, while concentrations $NH_4$, K, Ca, Mg and $SO_4$ were not different between the two media.

Humidification and Shading Affect Growth and Development of Cutting Propagated 'Maehyang' Strawberry (Fragaria × ananassa Duch.) at Propagation Stage (삽목번식 시 가습과 차광 처리에 따른 '매향' 딸기의 생육)

  • Kang, Dong Il;Jeong, Hai Kyoung;Park, Yoo Gyeong;Wei, Hao;Hu, Jiangtao;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2019
  • This study was conducted to examine the effect of humidification and shading during cutting propagation on growth and development of strawberry (Fragaria x ananassa Duch.) 'Maehyang' plants at a propagation stage. The runner cuttings were stuck on Nov. 23, 2017 in propagation benches set in a Venlo-type glasshouse. Four shading treatments, no shading (control, C), 55% shading with white lawn (W55), 55% black shading net (B55), or 100% black plastic film (B100) with either an intermittent fog system (H) or without fog system. The shading and fog systems were removed 2 weeks after sticking of strawberry cuttings. A nutrient solution for strawberry, which was developed by Yamazaki, was supplied once a day with electrical conductivity (EC) $1.6dS{\cdot}m^{-1}$ and pH 5.8. Growth parameters such as plant height, longest root, crown diameter, leaf chlorophyll, leaf area and fresh and dry weight were measured at 7 days and 26 days after sticking. There was no significant difference in growth of above-aerial part of strawberry. The overall growth of the strawberry roots was better grew by providing fog than that not provide fog. The root fresh weight and root dry weight after 26 days after sticking of strawberry cutting was the best in the treatment that provided fog system without shading (CH). The longest root after 26 days after sticking of strawberry cutting was the best in the treatments that provided fog system with either 55% white lawn (W55H) and 55% black shading net (B55H). These results suggest that morphogenesis of these plants were affected by humidification and shading types. In a broader perspective, these results can be used to optimize studies of other crops grown from cuttings.

Evaluation of Commercial Korean Honey Quality and Correlation Analysis of the Quality Parameters (국내 시판 벌꿀의 품질 평가 및 품질인자간 상관관계 분석)

  • Sung, Hwa-Jung;Jung, Chuleui;Kwon, Jiyoung;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1489-1500
    • /
    • 2018
  • Honey is made from flower nectar by honey bees. In this study, 120 honeys from various flowers and across eight different provinces in Korea were collected and their components, antioxidants, and hemolytic activities against red blood cell were evaluated. Our results show that total polyphenol (TP) varied widely across the samples, with chestnut honey showing the highest TP ($77.1{\pm}8.4mg/100g$), protein content ($25.9{\pm}0.9mg/100g$), and absorbance at 400 nm ($A_{400}$ : $0.156{\pm}0.036$). In contrast, the acacia honey and sugar honey had a TP of 9.5~30 mg, 12~15 mg/100g of, and the lowest $A_{400}$ of $0.06{\pm}0.02$. High amounts of total flavonoid were quantified in the jujube and chestnut honeys at $8.73{\pm}7.31$ and $8.39{\pm}3.02mg/100g$, respectively. No samples demonstrated hemolytic activity up to 1 mg/ml. Antioxidant activities determined by DPPH, ABTS, and nitrite scavenging placed the chestnut honey highest, followed by jujube, styrax, multi-floral, citrus, acacia and sugar honey. Analysis of parameter correlations indicated that the components and bioactivity of the honey are dependent on the origin of the flower rather than on bee-farming regions. A positive correlation between TP content and antioxidant activity was identified. The correlation coefficients between $A_{400}$ and the TP, ABTS scavenging, and reducing power values were 0.804, 0.772 and 0.741, respectively. We therefore suggest that $A_{400}$ could be used as a noble, economic and simple factor for honey quality evaluation. Our results can potentially be used to develop functional honey for the food and pharmaceutical industries.

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities (광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil Nam;Byun, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.609-615
    • /
    • 2011
  • Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

Effects of Elevated Temperature after the Booting Stage on Physiological Characteristics and Grain Development in Wheat (밀에서 출수 후 잎의 생리적 특성 및 종실 생장에 대한 수잉기 이후 고온의 효과)

  • Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.307-317
    • /
    • 2021
  • In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.