• Title/Summary/Keyword: Plant Evaluation

Search Result 2,868, Processing Time 0.026 seconds

A Study on Stress and Vibration Evaluations and Application of Piping System in Petrochemical Plant (석유화학 플랜트 배관계의 응력 및 진동 평가와 적용에 관한 연구)

  • 민선규;최명진;장승호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.110-116
    • /
    • 2002
  • Here are shown on stress and vibration evaluations and application of piping system in petrochemical plant with and actual example. While stress evaluation by thermal growth has no argument on the calculated results, vibrational evaluations have some different results in accordance with the evaluation methods. In case of the static stress evaluation the ASME B3l.3 code defines 7000 cycles of fatigue lift: in operating the piping system with a design condition. However, the method of vibrational evaluation on piping systems in petrochemical plants has not been established clearly, yet. In this stuffy, it is purposed to present the requirement of a vibrational evaluation method for petrochemical plant piping system, with an actual application.

Development of Performance Evaluation System for Plant Management Appling BSC Concept (BSC를 이용한 설비관리 업무의 성과평가시스템 개발)

  • Kim, Kwang-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.231-239
    • /
    • 2012
  • A company's reliance on plants is growing in the area of production and service. Therefore, the importance of the work on plants in order to manage them efficiently is growing. Effective plant management increases the durability and efficiency of the plant. An organized BSC also increases the workers' will to work harder which is to bring the higher quality of plant management. In this way, however, it has studied with variety ways to assess plant management task for performance evaluation, there is a little deficiency that the study of methodical performance evaluation that based on the some strategies. The BSC, the very way, and it has been utilized in balanced and methodical performance evaluation means in widespread fields with strategy as the center to get visions. In this study, I have developed the performance evaluation system for plant management, appling BSC concept.

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

TECHNICAL EVALUATION OF THE CONTINUED OPERATION OF NPP

  • Kim, Tae-Ryong;Jin, Tae-Eun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.277-284
    • /
    • 2008
  • Recently, the long-term operation of a nuclear power plant beyond its licensed term has become a worldwide trend as long as the safety of the plant is maintained in the extended period. Kori Unit 1, the oldest PWR in Korea, is the foremost example of this type of long-term operation in Korea. Comprehensive technical evaluation of the long-term operation of this plant was completed to confirm the overall safety of the plant. The technical evaluation included a review of PSR results, an assessment on aging management programs and time limited aging analyses, and a statement of radiological impact on the environment. Based on all of the results of the technical evaluation activities, Kori Unit 1 was approved to operate for an additional 10 years beyond its original design life of 30 years.

The Selection of Human factors Evaluation Criteria for Information Display on VDT using AHP (AHP를 이용한 개량형 정보 표시 평가 항목의 중요도 선정에 관한 연구)

  • 차우창;장성필
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.109-120
    • /
    • 2004
  • In large scale complex system such as a nuclear power plant, it is important to select guidelines and/or checklist to evaluate the system performance, especially human performance for visual information while the number of evaluation items of the guidelines and checklist is voluminous. This paper presents the methodology and experiment for the relative weights or priority selection of evaluation items on the advanced information display of main control room in a nuclear power plant. To summarize this, 1) many human factors guidelines of Visual Display Terminal(VDT) displays are collected, 2) the collected guidelines are integrated and unified based on some rules in a way to avoid confusion or errors about work performances of operator groups, 3) using the unified guidelines, the more important items are defined when the advanced information indexes are applied by using the Analytic Hierarchy Process(AHP). For employing the AHP, the decisions and response of many human factors evaluation specialists in this field are collected to get the priority order of the evaluation items of VDT. The result of this paper will be applied for the evaluation of the usability of next generation of nuclear power plant which is focused on the visual information display on VDT.

Development of Power Performance Evaluation System using Modeling Technology (설비 모델링 기술을 이용한 발전성능평가 시스템 구성방안 연구)

  • Lee, Ji-Hoon;Lee, In-tae;Jung, Nam-Joon;Bae, Jung-Seok;An, Young-Mo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Performance evaluation of a plant to efficiently manage and maintain the performance of the plant is a very important procedure. However, since the conventional performance evaluation method is an Excel-based manual method, the preparation procedure is complicated and the versatility is poor. In this paper, we analyze the problems of the existing performance evaluation system, effectively model the equipment, calculate the missing physical properties, and improve the versatility, efficiency and accuracy of the performance evaluation through the equipment modeler which performs automatic index calculation based on this.

Performance Evaluation of Rice Mill Plant By a Computer Simulation

  • Chung, Jong-Hoon
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • A rice mill plant with a capacity of 3 t/h was constructed with automated facilities at Chonnam National University. A simulation model was developed with SLAMSYSTEM for evaluation and improving the rice mill process. The developed model was validated in the views of hulling efficiency, milling efficiency, milled rice recovery, other materials produced, at bottlenecks in the processes. The results of hulling efficiency, milling efficiency, milled rice recovery in the simulation were, respectively, 81.1%, 89,5%, and 73.1%, while those of the actual mill plant were 81.5%, 90.2%, and 73.5%. The simulation results including the rates of other materials(chaff, bran, broken rice, stone, etc) produced in the processes were almost similar with those of the actual process. In the simulation the bottlenecks were found out in the process for separating brown rice and sorting colored rice. These phenomena also appeared in the actual process. It needed to increase the hourly capacities of the brown rice separator and the rice color sorter. As the developed model could well express the automated rice mill plant, it could be used for designing and improving rice mill plants.

  • PDF

A Basic Study on Utilization of Angelica acutiloba Kitag (Tanggui)

  • Choi Seong-Kyu;Yang Deok-Chun
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.230-234
    • /
    • 2005
  • This study was conducted to determine feasibility of utilization of Angelica acutiloba. Especially, the quality characteristics of bread prepared with the addition of Angelica acutiloba powder were investigated. Sensory evaluation and spoilage test were conducted for preparation of functional breads which added with ground plant matters (leaves and stems) from Angelica acutiloba. The result showed that the functional breads had high score of overall liking as well as low spoilage rate when added with 0.5 to 1.0% ground plant matters of Angelica acutiloba. Consumer acceptability evaluation showed a significant preference when added 0.5 to 1.0% ground leaves and stems of Angelica acutiloba into breads. Functional breads which added powder of Angelica acutiloba inhibited the growth of fungi. The more addition of Angelica acutiloba powder, the higher the degrees of this inhibited. These results suggested that the shelf-lives of the breads were extended by the addition of Angelica acutiloba powder. Further studies were required for improvement of functionality and diversity of bread products using medicinal plant materials as an additive.

  • PDF

Deterioration Evaluation for Industrial Pipeline by Sectionalizing (산업시설 배관의 섹션화에 의한 노후도 평가)

  • Min, Hyuk-Ki;Kim, Sang-Bum;Kim, Byung-Woo;Kim, Hyoung-Ki;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.123-130
    • /
    • 2016
  • This study introduced deterioration evaluation item and criteria that could be applied to industrial facilities with the most widely used carbon steel pipe installed for ordinary piping (KSD 3507). Experimental industrial pipes were evaluated with pipe sectionalizing method combined with the established evaluation item and criteria to measure and manage semi-continuously for overall piping system. After applying outcomes from this study to a plant of incineration facility, a 42% saving in repairing and remodeling cost was achieved.