• 제목/요약/키워드: Plant Defense

검색결과 526건 처리시간 0.024초

단백질 분해가 식물의 진균 병 진전에 미치는 영향 (The Roles of Protein Degradation During Fungal-plant Interactions)

  • 안일평;박상렬;배신철
    • 한국균학회지
    • /
    • 제38권2호
    • /
    • pp.89-94
    • /
    • 2010
  • 농업경영측면에서, 또 균학적생화학적 측면에서도 식물을 침해하는 진균들의 연구는 반드시 필요하며 병 발생이나 저항성 발현 기작 구명은 기주와 기생체에 대한 연구를 동시에 진행해야 정확히 파악할 수 있다. 현재 병원균이 생산하는 분비체상과 비병원성 인자에 대한 연구는 많은 경우 세균에서 수행되고 있으며 사상균 중 조균인 Phytophthora와 진균인 Cladosporium에서만 병원균의 effector 복합체와 기주의 저항성 기제 간 관계가 같이 진행되고 있을 뿐이다. 앞에서 살펴보았듯 진균-기주 체계에서 단백질 분해가 병원성 조절 및 침입에 관여한다고 정확히 알려진 것은 단지 수종에 불과하며 그 기작도 세포자가포식과 ubiquitin 부가반응에 제한되어 있다. Post translational modification과 단백질 분해기작이 대단히 다양하고 거의 모든 진핵생물 체계에서 관찰되고 있음을 고려할 때 단백질 분해 과정은 세균 뿐 아니라 진균에서도 병원성 발현과 저항성 조절에 참여하고 있을 것으로 생각되며 이에 대한 연구가 앞으로 계속 요구될 것이라 생각된다.

물 부족 현상으로 인한 잔디의 생리학적 반응: 리뷰 (Turfgrass Responses to Water Deficit: A Review)

  • 이준희
    • 아시안잔디학회지
    • /
    • 제25권2호
    • /
    • pp.125-132
    • /
    • 2011
  • 잔디가 건조 스트레스를 받은 상태에서 잔디의 생리학적 메커니즘과 건조 상태에서 식물이 회복하는 생리학적 메커니즘을 보다 깊이 이해하고자 한다. 증산작용과 Stomatal Conductance의 상호 관계로 인한 광합성량의 변화, 식물 세포 내부의 변화, 삼투압 조절능력의 변화, 호르몬의 변화, 단백질 변성 등의 생리학적 반응들을 이해하고 건조 스트레스 상태에서 회복하는데 세포내부의 적응 과정, 뿌리의 반응과 같은 생리학적인 측면에 대해 이해하고 건조 스트레스 상태에서 엽록소가 흡수하고 반사하는 Spectral Reflectance의 변화를 이해하고자 한다. 하지만 건조스트레스로 인한 식물의 생리학적 메커니즘에는 아직 많은 의문점을 가지고 있으며 향 후 외부환경 스트레스에 의한 식물의 Self-defense 메커니즘을 더욱 깊게 이해하여 보다 수준 높은 관리기법들을 연구하는데 초점을 맞추어야 할 것이다.

Isolation and Identification of Short Term Drought-Induced Genes in Zea mays L. Leaves

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Choi, Gi Jun;Ji, Hee Jung;Kim, Won Ho;Lee, Ki-Won
    • 한국초지조사료학회지
    • /
    • 제37권3호
    • /
    • pp.237-241
    • /
    • 2017
  • Drought is one of the detrimental factors that impair plant growth and productivity. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in maize leaves in response to drought stress. Two-week-old maize seedlings were exposed to drought (DT) by suspending water supply. DEGs were screened after 3 days of DT-treated samples using the ACP-based technique. Several DEGs encoding 16.9 protein, antimicrobial protein, hypothetical protein NCLIV_068840, thioredoxin M-type were identified in maize leaves under drought stress. These genes have putative functions in plant defense response, growth and development. These identified genes would be useful for predictive markers of plant defense, and growth responses under drought stress in plants.

탠덤 비행체의 선구탄두 기폭 충격 측정 시스템 구현 (Explosion Shock Measurement System of the Precursor Warhead for the Tandem Projectile)

  • 최동혁;안지연;김유범;손중탁;이욱준;박현수
    • 한국군사과학기술학회지
    • /
    • 제24권5호
    • /
    • pp.503-510
    • /
    • 2021
  • This paper presents a system that measures the acceleration of the shock caused by the explosion of the precursor warhead for the tandem projectile. The proposed system, which is implemented based on the MIL-STD-810G, Method 517.1, consists of a miniaturized shock measurement device, a cable, accelerometers, and a trigger circuit. The shock measurement device has a size of ¢102 × 171 mm and cable has a length of 3 m. The operational confirmation test is conducted by implementing the measurement system. The Analysis of shock data(accelerometer output data) is carried out using Shock Response Spectrum(SRS), pseudo velocity and plot of acceleration time transient. Through measurement analysis, one can predict the damage of electronics in projectile when precursor warhead is exploded.

RDX를 적용한 다기추진제의 연소 및 강내탄도 특성 (Characteristic Property of Combustion and Internal Ballistics of Triple-Based Propellant including RDX)

  • 손수정;이원민;이우진;권순길;정진영
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.321-328
    • /
    • 2022
  • The current development tend of the gun propellants that they should have low sensitivity and high energy. We studied a nitrocellulose based propellant composition that replaced sensitive NG with RDX and DEGDN which high energy and low sensitivity. The important factors in the design of the gun propellant were impetus and flame temperature. NC-based propellant containing RDX showed similar impetus but low flame temperature compared to KM30A1, a triple-based propellant. The developed propellant composition didn't show any abnormal combustion reaction and the characteristics of ballistic resistance were also confirmed.

Expression Analysis of Sweetpotato Sporamin Genes in Response to Infection with the Root-Knot Nematode Meloidogyne incognita

  • Jung-Wook Yang;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.163-168
    • /
    • 2023
  • Sweetpotato (Ipomoea batatas [L.]) is a globally important root crop cultivated for food and industrial processes. The crop is susceptible to the root-knot nematode (RKN) Meloidogyne incognita, a major plant-parasitic RKN that reduces the yield and quality of sweetpotato. Previous transcriptomic and proteomic analyses identified several genes that displayed differential expression patterns in susceptible and resistant cultivars in response to M. incognita infection. Among these, several sporamin genes were identified for RKN resilience. Sporamin is a storage protein primarily found in sweetpotato and morning glory (Ipomoea nil). In this study, transcriptional analysis was employed to investigate the role of sporamin genes in the defense response of sweetpotato against RKN infection in three susceptible and three resistant cultivars. Twenty-three sporamin genes were identified in sweetpotato and classified as group A or group B sporamin genes based on comparisons with characterized sweetpotato and Japanese morning glory sporamins. Two group A sporamin genes showed significantly elevated levels of expression in resistant but not in susceptible cultivars. These results suggest that the elevated expression of specific sporamin genes may play a crucial role in protecting sweetpotato roots from RKN infection.

Genome-wide analysis of heterosis-related genes in non-heading Chinese cabbage

  • Yi, Hankuil;Lee, Jeongyeo;Song, Hayong;Dong, Xiangshu;Hur, Yoonkang
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.208-219
    • /
    • 2017
  • Heterosis or hybrid vigor describes a phenomenon that superior phenotypes compared to the two parents are observed in the heterozygous $F_1$-hybrid plants. Identification and characterization of heterosis-related genes (HRGs) will facilitate hybrid breeding in crops. To identify HRGs in Brassica rapa, we analyzed transcriptome profiling using a Br300K microarray in non-heading Chinese cabbage at three developmental stages. A large number of genes were differentially expressed in $F_1$ hybrids and non-additive expression was prominent. Genes that are expressed specifically for $F_1$ hybrid at all three stages were Brassica-specific uncharacterized genes and several defense-related genes. Expression of several photosynthesis- and stress-related genes were also $F_1$ hybrid-specific. Thirteen NBS-LRR class genes showed high and specific expression in $F_1$ hybrid Shulu: some of them were characterized as defense genes in Arabidopsis, but most have not been. Further characterization of these defense-related genes in Brassica species and its application will be helpful for understanding the role of defense responses in heterosis. In addition, results obtained in this study will be valuable to develop molecular markers for heterosis and disease resistance in B. rapa.

Enhancing Resistance of Red Pepper to Phytophthora Blight Diseases by Seed Treatment with Plant Growth Promoting Rhizobacteria

  • M. Rajkumar;Lee, Kui-Jae;Lee, Wang-Hyu
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.95.1-95
    • /
    • 2003
  • Plant growth promoting rhizobacteria (PGPR) have been shown to suppress phytopthora blight. This suppression has been related to both microbial antagonism and induced resistance. The PGPR isolates were screened by dual culture plate method and most of the isolates were showed varying levels of antagonism. Among the PGPR isolates pyoverdin, pyochelin and salicylic acid producing strains showed the maximum inhibition of mycelial growth of Phytopkhora capsici and increased plant growth promotion in red pepper. PGPR isolates further analysed for its ability to induce production of defence related enzymes and chemicals. The activities such as Phenyle alanin ammonia Iyase (PAL), Peroxidase (PO), Polyphenol oxidase (PPO) and accumulation of phenolics were observed in PGPR pretreated red pepper plants challenged with Phytopkhora capsici. The present study shows that an addition of direct antagonism and plant growth promotion, induction of defense related enzymes involved to enhance resistance against invasion of P. capsici in red pepper.

  • PDF

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1997년도 Proceedings of special lectures on Recent Research Trend of Plant Pathology
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF