• Title/Summary/Keyword: Plant Cells

Search Result 2,834, Processing Time 0.029 seconds

GUS Expression by CaMV 35S and Rice Act1 Promoters in Transgenic Rice

  • Kwang-Woong Lee
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.371-380
    • /
    • 1994
  • To determine the patterns and the levels of expression of the cauliflower mosaic virus (CaMV 35S) promoter and the rice actin 1 (Act1) promoter in rice, transgenic rice plants containing CaMV 35S-$\beta$-glucuronidase (GUS) and Act1-GUS constructs were generated and examined by fluorometric and histochemical analyses. The fluorometric analysis of stably transformed calluses showed that the activity of the rice Act1 promoter was stronger than that of the CaMV 35S promoter in rice cells. In a histochemcial study of the transgenic rices, it was shown that the GUS activity directed by the CaMV 35S promoter was localized mainly in parenchymal cells of vascular tissues of leaves and roots and mesophyll cells of leaves. These results are similar to those of potato, a dicot plant. In contrast, rice plant transformed with Act1-GUS fusion construct revealed strong GUS activity in parenchymal cells of vascular tissue, mesophyll cells, epidermal cells, bulliform cells, guard subsidiary cells of leaves and most cells of the root, suggesting that the rice Act1 promoter is more constitutive than the CaMV 35S promoter. It was also confirmed that in both types of transgenic rice little or no staining was localized in metaxylen tracheary elements of vascular tissue from leaves or roots. These results indicate that the rice Act1 promoter can be utilized more successfully for expression of a variety of foreign gene in rice than the CaMV 35S promoter.

  • PDF

Induction of Symbiosis between Nostoc muscorum and Cultured Plant Cells II. Changes of nitrogen fixation ability and morphology by association of N. muscorum with cultured tobacco cells (Nostoc muscorum과 식물배양세포의 공생유도에 관한 연구 II. N. muscorum과 담배배양세포의 혼합배양에 따른 질소고정능과 형태적 변화)

  • 정현숙
    • Journal of Plant Biology
    • /
    • v.30 no.4
    • /
    • pp.257-266
    • /
    • 1987
  • Investigation on the ability of nitrogen usage by N2-fixing Nostoc muscorum and cultured tobacco cells when they were associately cultured on nitrogen-free media was carried out. Also, effect of polyamines on the associated cultured condition was carried out. In addition, morphological changes of N. muscorum and cultured tobacco cells in associate culture were observed to detect the possibility of induction of nitrogen fixing ability on cultued plant cells. The activity of nitrogenase increased markedly when N. muscorum was grown exclusively on nitrogen-free media. When N. muscorum was cultured associately with cultured tobacco cells on nitrogen-free media containing polyamines, high activity was detected in 10-4 M spermine treated group. Investigation on the change of polyamine amounts showed two times increase in spermidine and eight times increase in spermine on a associate culture. These effects of associated culture were shown through morphological change such as dense loclization of N. muscorum around the cultured tobacco cells as well as inside the cells. These results indicate the viability of N. muscorum in cultured tobacco cells and possible induction of nitrogen fixation ability by symbiosis.

  • PDF

Construction of Citrus Transgenic Plant with Fatty Aicd Desaturase Gene

  • Jin, Seong-Beom;Boo, Kyung-Hwan;Lee, Do-Seung;Chae, Hyun-Byung;Song, Seong-Jun;Riu, Key-Zung
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.113-118
    • /
    • 1999
  • The transgenic plant of Citrus species (Citrus aurantium L.) was constructed with a fatty acid desaturase gene using microprojectile bombardment transformation system. The DNA of a fatty acid desaturase gene, fad7, constructed in pBI121 was coated onto tungsten particles ($1.1{\mu}m$) and introduced into callus cells by bombarding with 1100 psi of helium pressure, 1/4 in of gap distance, 7.0 cm of target distance and 27 in Hg of chamber vacuum. The bombarded cells were selected on the medium containing kanamycin. The selected cells were successfully regenerated into plantlets via somatic embryogenesis on the media containing plant growth regulators. The results of polymerase chain reaction analysis of genomic DNAs from the putative transformants showed that the introduced DNAs of fad7 were present in both the selected callus cells and the regenerated plantlets.

  • PDF

Plant Defense Responses Coming To Shape

  • Kwon, Chi-An
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Although still poorly understood, accumulating evidence clearly supports that plants also have a good immune system which have been developed and acquired during the evolution. The lack of specific mobile immune cells like a B or T cell in plants additionally suggests that most plant cells have capacity for defending themselves against numerous pathogens. Rapidly growing advances in understanding plant defense responses implicate that plant and animal immune responses are evolutionarily convergent although their origins are thought to be different. On the basis of recent findings, here current understanding of plant defense responses will be discussed.

Cytotoxicity of natural killer cells on canine mammary carcinoma cells (개 유선종양세포에 대한 자연살해세포 독성)

  • Jeong, Da-Un;Byeon, Jeong Su;Gu, Na-Yeon;Jung, Moonhee;Kim, Eun Hee;Kim, Hyung-Seok;Cho, In-Soo;Song, Jae-Young;Hyun, Bang-Hun;Lee, Jienny
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • Natural killer (NK) cells play have a crucial role in the early phase of immune responses against various pathogens. We compared characteristics of canine NK cells against two canine mammary carcinoma cell lines, REM134 and CF41.Mg. REM134 showed higher expression of progesterone receptor, proliferative cell nuclear antigen, Ki67, multiple drug resistance, Bmi-1, c-myc, E-cadherin, and human epidermal growth factor receptor type-2 than that of CF41.Mg. For specific expansion and activation of NK cells, we isolated CD5 negative cells from canine peripheral blood mononuclear cells and co-cultured K562 cells in the presence of interleukin (IL)-2, IL-15, and IL-21 for 21 days. As a result, we found that expression markers of activated NK cells such as NKp30, NKp44, NKp46, NKG2D, CD244, perforin, granzyme B, and tumor necrosis factor alpha were highly upregulated. In addition, we found there was upregulated production of interferon gamma of activated NK cells against target cells such as REM134 and CF41.Mg. Specifically, we observed that cytotoxicity of NK cells against target cells was more sensitively reacted to CF41.Mg than REM134. Based on the results of this study, we recommend the development of an experimental application of CF41Mg, which has not been reported in canine mammary carcinoma research.

Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase. (Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정)

  • 권순태;이명현;오세명;정도철;김길웅
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.

Differential responses of peroxidases in sweetpotato suspension-cultured cells to cadmium treatment

  • Ju Hwan Kim;Ki Jung Nam;Kang-Lok Lee;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.76-81
    • /
    • 2023
  • As cultured plant cells can grow in high oxidative stress conditions, they form an excellent system to study antioxidant mechanisms and the mass production of antioxidants. Oxidative stress is a major cause of damage in plants exposed to various types of environmental stress, including heavy metals, such as cadmium (Cd). Heavy metal accumulation can interfere with many cell functions and plant growth. To evaluate the contribution of oxidative stress to Cd-induced toxicity, cultured sweetpotato (Ipomoea batatas) cells were treated with increasing concentrations of Cd (0, 10, 25, and 50 μM) and cultured further. Cell growth was significantly inhibited by 25 and 50 μM of Cd, and the total protein content increased with 50 μM of Cd. Additionally, the activity of peroxidase (POD) and ascorbate peroxidase (APX), antioxidant enzymes that remove hydrogen peroxide (a reactive oxygen species), increased in the cells after treatment with 50 μM of Cd. The expression analysis of POD, APX, and peroxiredoxin (PRX) isolated from sweetpotato cultured cells in a previous study revealed the differential expression of POD in response to Cd. In this study, the expression levels of several acidic POD (swpa2, swpa3, and swpa4) and basal POD (swpb1, swpb2, and swpb3) genes were increased in Cd-treated cultured cells. These results indicate that Cd-mediated oxidative stress is closely linked to improved POD-mediated antioxidant defense capacity in sweetpotato suspension-cultured cells.

Comparative analysis of yeast cell viability at exponential and stationary growth phases

  • An, Yejin;Jo, Nayoon;Kim, Hyeji;Nam, Dahye;Son, Woorim;Park, Jinkyu
    • Analytical Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.181-188
    • /
    • 2022
  • This paper describes a comparative analysis of yeast cell viability at exponential and stationary growth phases using multiple conventional techniques and statistical tools. Overall, cellular responses to various viability assays were asynchronous. Results of optical density measurement and direct cell counting were asynchronous both at exponential and stationary phases. Proliferative capacity measurement using SP-SDS indicated that cells at the end of the stationary phase were proliferative as much as exponentially growing cells. Metabolic activity assays using two different dyes concluded that the inside of cells at stationary phase is slightly less reducing compared to that of exponentially growing cells, implying that the metabolic activity imperceptibly declined as cells were aged. These results will be helpful to understand the details of yeast cell viability at exponential and stationary growth phases.

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice

  • Na Gyeong Geum;Ju Hyeong Yu;So Jung Park;Min Yeong Choi;Jae Won Lee;Gwang Hun Park;Hae-Yun Kwon;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.697-703
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF