• Title/Summary/Keyword: Plant Cell Culture

Search Result 622, Processing Time 0.031 seconds

Screening of Antiviral Medicinal Plants against Avian Influenza Virus H1N1 for Food Safety

  • Lee, Jang-Hyun;Van, Nguyen Dinh; Ma, Jin-Yeul;Kim, Young-Bong;Kim, Soo-Ki;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.345-350
    • /
    • 2010
  • Various extracts from 30 medicinal plants were evaluated for their antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) and cytotoxicity in MDCK cell culture. The plant material (30 g) was extracted with methanol (300 mL) at room temperature for 24 h, after which the methanolic extracts were filtered, evaporated, and subsequently lyophilized. Evaluation of the potential antiviral activity was conducted by a viral replication inhibition test. Among these medicinal plants, Tussilago farfara, Brassica juncea, Prunus armeniaca, Astragalus membranaceus, Patrinia villosa, and Citrus unshiu showed marked antiviral activity against influenza virus A/H1N1 at concentrations ranging from 0.15625 mg/mL to 1.25 mg/mL, 0.3125 mg/mL to 10 mg/mL, 5 mg/mL to 10 mg/mL, 0.625 mg/mL to 10 mg/mL, 0.625 mg/mL to 10 mg/mL, and 0.3125 mg/mL to 5 mg/mL, respectively. The extracts of Tussilago farfara showed cytotoxicity at concentrations greater than 2.5 mg/mL, whereas the other five main extracts showed no cytotoxicity at concentrations of 10 mg/mL. Taken together, the present results indicated that methanolic extracts of the six main plants might be useful for the treatment of influenza virus H1N1.

Callus Induction and Plant Regeneration from Stolon in Zoysiagrass (한국잔디류에서 포복경 배양을 통한 캘러스 유기와 재분화에 관한 연구)

  • 김종보;박순정;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.4
    • /
    • pp.311-320
    • /
    • 1997
  • This study was carried out to induce and maintain callus from 59 zoysiagrass lines, to know the effective disinfestation method for zoysiagrass stolon as explant and the difference in the response of callus induction among 59 lines, and to investigate the effect of medium, growth regulators, light, temperature, stolon part and internode position on callus induction and emhryogenic callus(E.C.) formation. The treatment of 0.lmg/L $HgCl_2$for 15 min resulted in no contamination and the highest callus induction(46.6%). Callus was induced from the 59 zoysiagrass lines. The callus growth of Z. japonica and Z. sinica was generally better than Z. matrella Ten cell lines whose callus and stolon grow fast in culture and in field, respectively were selected to he used for breeding. Callus induction was the most effective at 2.0mg /L of both 2, 4-D and picloram in MS medium. MS medium was the best for callus induction and growth while LS medium was the best for embryogenic callus and shoot formation. Callus induction and growth was better at 28, 31$^{\circ}C$. than 25$^{\circ}C$. and dark condition was better than light condition in MS me-dium containing 2mg/L 2,4-D. While callus induction was better with node part as explant than with internode part, callus growth and embryogenic callus formation was better with internode part. In 'Japonica 1', the first internode was the most effective in callus induction, but third internode was the best in '$M_2$ X $S_2$'.

  • PDF

Induction and Proliferation of Callus in Rhus chinensis Mill. and Its Effect on Skin Whitening (붉나무 캘러스 유도 및 그 추출물로부터 피부미백 효과에 관한 연구)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Lee, Kwan-Ho;Jang, Jin-Hoon;Han, In Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.302-309
    • /
    • 2020
  • The objective of this study was to optimize the condition for induction and proliferation of callus from Rhus chinensis Mill. and investigate the skin-brightening effect of Rhus chinensis callus (RCC). It was confirmed that the most proper plant growth regulator (PGR) for callus induction is 1.0 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D). The most optimal condition of PGR, medium and additives for callus proliferation were 2,4-D (1.0 mg/L), MS medium and citric acid, respectively. Inhibitory activities of tyrosinase were higher at 50 and 100 ㎍/mL of RCC extracts (41.86 and 75.56%, respectively) than arbutin (27.32%). As the results of measuring melanin inhibition in B16F1 melanocyte and B16F10 melanoma cell, RCC extracts increased its inhibitory activities concentration-dependently, and were found to have higher whitening effect than arbutin at a concentration of 100 ㎍/mL. Therefore, it is suggested that RCC can be used as an effective material for skin-brightening cosmetics.

Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry

  • Han, Viet-Cuong;Yu, Nan Hee;Yoon, Hyeokjun;Ahn, Neung-Ho;Son, Youn Kyoung;Lee, Byoung-Hee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.115-130
    • /
    • 2022
  • Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

Increase of the Treatment Efficiency of a Pharmaceutical Wastewater and a Paperboard Wastewater by the addition of Bacteria (세균첨가에 의한 제약폐수 및 판지폐수의 처리효율의 향상)

  • 이형춘
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.370-374
    • /
    • 2000
  • Some bacterial strains isolated from activated sludges and media and type cultures were cultivated in a pharmaceutical wastewater and a paperboard wastewater and added during batch treatment of those wastewaters in order for these strains to increase the treatment efficiency. Bacillus sp(PC-3) isolated from the charcoal media of the pharmaceutical wastewater plant grew remarkably over there strains in that wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^6m/L$. Bacillus subtills KCTC 1028 a type strain grew best in the paperboard wastewater and the viable cell count after 24hr cultivation was $1.1{\times}10^7m/L$. Addition of PC-3 in a batch treatment of the pharmaceutical wastewater increased COD removal by 18% after 8 day. And addition of Bacillus subtills KCTC 1028 in a batch treatment of the paperboard wastewater increased COD removal by 14% only after 24hy Bacillus subtills DCTC 1028 was though to be able to be produced economically using alcohol distillery wastewaters from starch material.

  • PDF

Characterization and Phytotoxicity of Zn, Zn Oxide Nanoparticles (아연 나노 입자와 산화아연 나노 입자의 특성과 식물독성)

  • Kim, Sung-Hyun;Baek, Ju-Hyung;Song, Yi-Reh;Sin, Min-Joo;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1129-1134
    • /
    • 2009
  • Increasing application of nanotechnology highlights the need to clarify nanotoxity and nanoparticles characterization. However, few researches have focused on phytotoxicity of nanoparticles. This study was to examine phytotoxicity on Cumumis sativus seedling and the dissolution of Zn, ZnO nanoparticles in hydroponic culture system. Results of this study; characteristics of Zn, ZnO nanoparticles are more aggregated in nutrient solution than deionized water. C. sativus biomass significantly reduced in the nutrient solution were higher than 100 mg/L, and Zn toxicity showed $Zn^{2+}$> Zn> ZnO NPs. Results of transmission electron microscopy images, Zn and ZnO nanoparticles greatly adhered onto the root cell wall and nanoparticles were observed in the root cell.

Physiological Studies on the Formation of Hairy Root by the A. rhizogenes. III. Attachment of A. rhizogenes strain A4 to Carrot(Daucus carota L.) Cells (Agrobacterium rhizogense에 Hairy Root 형성에 대한 생리학적 연구. III. 당근 세포에의 A. rhizogenes의 부착)

  • Hwang, B.;Hwang, S. J.;Ann, J. C.;Jo, H. S.
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.94-98
    • /
    • 1989
  • In vitro attachment experiments of bacteria to surface of host plant cell were carried out using C14 labeled cells of A. rhizogenes strain A4 and carrot protoplasts isolated from suspension culture of cells. Protoplasts were cocultivated with A. rhizogenes at various times after their isolation. Attachment kinetics showed that adherence of bacteria to protoplasts attained a maximum level within 120mins of co-cultivation. Maximum attachment occured at pH 6.0 and 24-35$^{\circ}C$. Bacterial attachment was observed at botg carrot cells with and without primary cell wall. The inhibition of transformation on the carrot root discs by A. rhizogenes was observed when non-related strain and heat inactivated bacterial strain cells were pretreated.

  • PDF

Effect of Growth Conditions on the Biomass and Lipid Production of Euglena gracilis Cells Raised in Mixotrophic Culture (Mixotrophic 배양조건에 따른 Euglena gracilis의 성장과 지질에 미치는 영향)

  • Jeong, U-Cheol;Choi, Jong-Kuk;Kang, Chang-Min;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • Microalgae are functional foods because they contain special anti-aging inhibitors and other functional components, such as ecosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and omega-3 polyunsaturated fatty acids. Many of these functional dietary components are absent in animals and terrestrial plants. Thus, microalgae are widely utilized in human functional foods and in the feed provided to farmed fish and terrestrial livestock. Many marine organisms consume microalgae, often because they are in an appropriate portion of the cell size spectrum, but also because of their nutritional content. The nutritional requirements of marine organisms differ from those of terrestrial animals. After hatching, marine animals need small live forage species that have high omega-3 polyunsaturated fatty acid contents, including EPA and DHA. Euglena cells have both plant and animal characteristics; they are motile, elliptical in shape, 15-500 μm in diameter, and have a valuable nutritional content. Mixotrophic cell cultivation provided the best growth rates and nutritional content. Diverse carbon (fructose, lactose, glucose, maltose and sucrose) and nitrogen (tryptone, peptone, yeast extract, urea and sodium glutamate) supported the growth of microalgae with high lipid contents. We found that the best carbon and nitrogen sources for the production of high quality Euglena cells were glucose (10 g L–1) and sodium glutamate (1.0 g L–1), respectively.

Cloning of Elicitor-Inducible 5-epi-Aristolochene Hydroxylase in Tobacco Cell Suspension Culture (담배 현탁배양 세포의 Elicitor 유도성 5-epi-Aristolochene Hydroxylase 유전자의 클로닝)

  • Soon Tae Kwon;In-Jung Lee;Joseph Chappell
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.604-613
    • /
    • 1998
  • The last enzyme of the sesquiterpen phytoalexin capsidiol synthesis in tobacco cell, 5-epi-aristolochene hydro-xylase which convert 5-epi-aristolochene (EAS) to capsidiol, was cloned by a reverse transcription polymerase chain reaction strategy and cDNA library screening. Cloned CYP-B3 contained high probability amino acid matches to known plant cytochrome P450 sequences and open reading frame with the conserved FxxGxRxCxG heme-binding region. Transcripts of CYP-B3 were not detected in control cells, but induced in elicitor-treated cells. Furthermore, CYP-B3 transcripts were induced by fungal extracts and cellulase but not by other stimuli(chilling, heat shock and 2,4-D). Induction of CYP-B3 transcripts by elicitor treatment was not affected by ancymidol and ketoconazole treat-ments suggesting that an inhibition of hydroxylase activity by Cyt P450 inhibitors resulting from post translational processing event.

  • PDF

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.