• Title/Summary/Keyword: Plant Cell Culture

Search Result 622, Processing Time 0.026 seconds

Effects of NOx and SOx on the Medium pH and microalgal growth in photo-culture system (광배양 시스템에서 NOx 및 SOx의 배지 pH와 미세조류 생장에 미치는 영향)

  • Yoon, Se Young;Hong, Min Eui;Sim, Sang Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.255-263
    • /
    • 2013
  • Carbon dioxide reduction technologies using photosynthetic microorganism were suggested to overcome environmental destruction caused by $CO_2$ in flue gases from power plant and other industries. However, there are many toxic constituents in flue gas including CO, NOx, SOx. Continuous and Excessive supply of these noxious gases to cells will leads to inhibition of microalgal growth along with partial cell death. In this study, we tested the noxious effect of SOx and NOx on the pH and microalgal growth under photoautotrophic culture in three microalgae of Neochloris oleoabundans, Chlorella vulgaris and Haematococcus pluvialis. As a result, SOx concentration more than 50 ppm led to the rapid reduction of pH, thereby inhibiting of the growth in Neochloris oleoabundans and Chlorella vulgaris. NOx concentration more the 100 ppm reduced the exponential growth of N. oleoabundans and C. vulgaris. And H. pluvialis exhibited low sensitivity to SOx and NOx. Consequently, the three microalgae of N. oleabundas, C. vulagaris and H. pluvialis showed the normal vegetative growth in 25 ppm of NOx and SOx. Above all, H. pluvialis was useful for the $CO_2$ sequestration of the flue gas including high concentrations of NOx and SOx.

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.

Shoot Proliferation and Plant Regeneration from Suspension-Cultured Cells of Dianthus gratianopol (패랭이꽃속 Dianthus gratianopol의 현탁배양세포로부터 Shoot 증식과 식물체 재분화)

  • Kim Joon-Chul
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.301-306
    • /
    • 2005
  • Conditions for efficient organogenesis and plant regeneration from Dianthus gratianopol suspension cultured cells were established. Shoot-forming calli of glossy surface, pale green and knobby type were selected from leaf explant-derived calli and were suspension-subcultured every week in CP liquid medium with 1.0 mg/L 2,4-D and 0.5 mg/L BAP. Combinations of 1.0 mg/L 2,4-D and 0.5 mg/L BAP, and 1.5 mg/L 2,4-D and 0.5 mg/L BAP were effective for the induction of regenerative callus from the suspension cultured cell clusters. Multiple shoot primordia were initiated from the green spots of these regenerative callus and formed shoots on MS medium with 1.0 mg/L TDZ and 0.5 mg/L PAA. Shoot regeneration frequency (calli regenerating at least one shoot) was about 87%. For plant regeneration, proliferated shoots were excised and transferred to MS medium with 0.1 mg/L NAA for root initiation after 9 weeks of culture. The regenerants were potted in soil and formed the flowering buds and petals. Also, adventitious shoots were formed from the excised green shoot primordia of regenerative callus and these shoots proliferated successfully and regenerated to whole plants.

Transfer of Insecticidal Toxin Gene in Plants: 2. Subcloning of B. thuringiensis Insecticidal Protein Gene and Rapid Plantlet Regeneration from Nicotiana tabacum Protoplast and Callus (식물세포에 살충독소유전자의 전이연구: 2. B. thuringiensis 살충독소유전자의 Subcloning과 Nicotiana tabacum의 원형질체와 칼루스로부터 신속재생연구)

  • 이형환;조상현황성희김수영
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.289-297
    • /
    • 1991
  • The insecticidal protein gene in the pKL-20-1 clone derived from Bacillus thuringiensis serovar. kurstaki plasmid was subcloned in the plant shuttle vector, pGA643. The 7.3 kb fragment was cloned in the BglII and Hpal sites of pGA643 vector and expressed in E. coli S17-1, which produced insecticidal proteins killing Bombyx mori larvae. The clone was named pHL-20. The protoplast formation, calli induction and plantlet regeneration of Nicotiana tabacum was carried out. A tremendous number of mesophyll protoplasts of N. tabacum were formed, up to 7$\times$105 protoplast per ml, for 20 hours in darkness in the enzyme solution of 0.5% cellulase and 0.1% macerosin, pH 5.8. The viabilities of the protoplasts were maintained above 80% for 6 days in the media containing 2mg/1 of NAA and 1mg/1 of kinetin. Calli were induced from the protoplasts and leaves of the N. tabacum on MS medium containing 0.5mg/1 BAP. Under the culture conditions the protoplasts underwent repeated cell division into calli. Plantlets were regenerated from callus cultures derived from protoplast and leaves. Shoots were induced in a medium containing 1mg/1 of BAP.

  • PDF

Cloning and Characterization of UV-B Inducible Chalcone Synthase from Grape Cell Suspension Culture System and Its Expression Compared with Stilbene Synthase

  • Song, Won-Yong;In, Jun-Gyo;Lim, Yong-Pyo;Park, Kwan-Sam
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • We performed the cloning of a chalcone synthase (CHS) gene, the key enzyme in the anthocyanin biosynthesis, from the cDNA library constructed with grape suspension cells irradiated UV-B. The PCR fragment was used to cloning the CHS gene. One CHS cDNA clone containing an open reading frame and a partial stilbene synthase (STS)cDNA, the stilbene-type phytoalexin, were isolated. The CHS cDNA clone (VCHS) showed 87% sequence homology with VvCHS (V.vinifea) and 72.3% identity with VSTSY(V.vinifea). its amino acid sequences were longer than any other CHS genes as 454 residues. Two genes were weakly expressed in white light irradiated cells, but highly induced in UV-B irradiated condition during 32 hours. Interestingly, the STS was quickly and abundantly expressed from 2 hours when supplemented with jasmonic acid (JA) and the maximum expression was observed at 4 hours and then gradually decreased. But, the additional UV-B or white light quickly degraded the STS expression than only JA treated grape suspension cells. The CHS also was rapidly induced with JA and the synergistical effect was observed at the addigional light treatment of UV-B or white light. These results are indicated that CHS and STS have different response mechanisms against the environmental stresses.

  • PDF

Suppression of Cyclooxygenase-2 Expression of Skin Fibroblasts by Wogonin, a Plant Flavone from Scutellaria Radix

  • Chi, Yeon-Sook;Kim, Hyun-Pyo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.96-96
    • /
    • 2003
  • Previously, wogonin (5,7-dihydroxy-8-methoxyflavone) was found to suppress proinflammatory enzyme expression including cyclooxygenase-2 (COX-2), contributing to in vivo anti-inflammatory activity against skin inflammation. However, the detailed effect on each skin cell type has not been understood. Therefore, present investigation was carried out to find the effect of wogonin on inflammation-associated gene expression from skin fibroblasts in culture using reverse transcriptase-polymerase chain reaction. As a result, it was found that wogonin (10 - 100 ${\mu}$M) clearly down-regulated COX -2 expression from NIH/3T3 cells treated with 12-O-tetradecanoylphorbol 13-acetate, interleukin-1${\beta}$ or tumor necrosis factor-a. But, the expression levels of COX-1, interleukin-1${\beta}$ and fibronectin were not significantly affected. This finding was well correlated with significant reduction of prostaglandin E$_2$(PGE$_2$) production by wogonin. As a comparison, NS-398 (selective cyclooxygenase-2 inhibitor) did not suppress COX -2 expression and other gene levels, while PGE$_2$production was potently reduced at 0.1 - 10 ${\mu}$M. All these results suggest that COX -2 down-regulation of skin fibroblasts may be, at least in part, one of anti-inflammatory mechanisms of wogonin against skin inflammation.

  • PDF

Protective Effect of MeOH Extract of Evodia officinalis on Cyanide-induced Neurotoxicity in Cultured Neuroblastoma Cells (오수유 MeOH 추출물이 Cyanide에 의한 신경세포의 보호효과에 미치는 영향)

  • Kim, Sang-Tae;Ahn, Soung-Hee;Kim, Jeong-Do;Kim, Young-Kyoon
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.4 s.135
    • /
    • pp.282-287
    • /
    • 2003
  • We reported that neurotoxicity may contribute to cyanide-induced neuronal injury. Cyanide stimulates the release of glutamate which can activate glutamate receptors to propagate excitotoxic processes. We examined the role of plant extracts in mediating the cyanide-induced cytotoxicity and report here that the cytotoxicity assessed in SK- N-SH cell cultures by measuring lactate dehydrogenase (LDH) in the culture media was significantly blocked by Evodia officinalis MeOH extract (OMU). Also, when OMU was treated in NaCN level cultures, the neurite outgrowth was regenerated as much as in the treatment of NaCN only. These results indicate that OMU treatment were not only protected the neurons against NaCN-induced damage but also regenerated the neurite outgrowth of neuroblastoma cells.

Functional Characterization of Callus Extracts of Apple 'Hirosaki' for Cosmetic Materials (사과 '히로사키' 캘러스 추출물의 기능성 화장품 소재로서의 특성)

  • Ko, Seunghee;Kim, Young-Soo;Lee, Jin-Hyuck;Kim, Il-Hyun;Kim, Seungbeom;Roh, Kyungbaeg;Shin, Seungwoo;Jung, Eunsun;Park, Deokhoon
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • In order to investigate functional characterization of callus extracts of apple 'Hirosaki' for cosmetic materials, biological activities of its extracts including wrinkle improvement, hair growth, and anti-inflammatory effect were investigated. The callus extract showed similar activity with TGF-${\beta}$ used as positive control at 50 ${\mu}g/mL$ in the test of collagen synthesis, and increased 40% of proliferation of hair follicle dermal papilla cells. Especially, in case of anti-inflammatory effect, callus extract inhibited about 50% of COX-2 expression which was known as response for intermediating inflammation, and about 70% of eotaxin-1 production which was increased by atopy dermatitis.

Formation of Assimilable Organic Carbon from Algogenic Organic Matter

  • Kim, Ji-Hoon;Chung, Soon-Hyung;Lee, Jing-Yeon;Kim, In-Hwan;Lee, Tae-Ho;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • The objective of this study was to assess the variation in the concentration of assimilable organic carbon (AOC) in a drinking water resource, and investigate the characteristics of AOC derived from algae. The seasonal change in AOC at the Kamafusa dam corresponded to changes in the algal cell number. In order to understand the relationship between AOC and algae in a water resource and water purification plant, two kinds of laboratory experiment were performed. The algal culture experiment showed that extracellular organic matter (EOM) that was released during the growth of Phormidium tenue with M-11 medium led to significant increases in the AOC concentration, but no significant variation in the AOC concentration was observed with CT medium containing a high dissolved organic carbon concentration. The chlorination experiment showed that the AOC included in EOM was not easily removed by chlorination, although the AOC included in intercellular organic matter released from the algal cells by chlorination was removed under conditions where residual chlorine was detected.

Speculation on the Identity of Bacteria Named TFOs Occurring in the Inefficient P-Removal Phase of a Biological Phosphorus Removal System

  • Lee, Young-Ok;Ahn, Chang-Hoon;Park, Jae-Kwang
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.3-7
    • /
    • 2010
  • To better understand the ecology of tetrade forming organisms (TFOs) floating in a large amount of dairy wastewater treatment plant (WWTP) effluent (sequencing batch reactor [SBR]) during the inefficient phosphorus (P) removal process of an enhanced biological P removal system, the TFOs from the effluent of a full scale WWTP were separated and attempts made to culture the TFOs in presence/absence of oxygen. The intact TFOs only grew aerobically in the form of unicellular short-rods. Furthermore, to identify the intact TFOs and unicellular short-rods the DNAs of both were extracted, analyzed using their denaturing gradient gel electrophoresis (DGGE)-profiles and then sequenced. The TFOs and unicellular short-rods exhibited the same banding pattern in their DGGE-profiles, and those sequencing data resulted in their identification as Acinetobacter sp. The intact TFOs appeared in clumps and packages of tetrade cells, and were identified as Acinetobacter sp., which are known as strict aerobes and efficient P-removers. The thick layer of extracellular polymeric substance surrounding Acinetobacter sp. may inhibit phosphate uptake, and the cell morphology of TFOs might subsequently be connected with their survival strategy under the anaerobic regime of the SBR system.