• Title/Summary/Keyword: Planning Ground

Search Result 468, Processing Time 0.034 seconds

DESIGN AND IMPLEMENTATION OF THE MISSION PLANNING FUNCTIONS FOR THE KOMPSAT-2 MISSION CONTROL ELEMENT

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.227-238
    • /
    • 2003
  • Spacecraft mission planning functions including event prediction, mission scheduling, command planning, and ground track display have been developed for the KOMPSAT-2 mission operations. Integrated event prediction functions including satellite orbital events, user requested imaging events, and satellite operational events have been implemented. Mission scheduling functions have been realized to detect the mission conflicts considering the user specified constraints and resources, A conflict free mission scheduling result is mapped into the spacecraft command sequences in the command planning functions. The command sequences are directly linked to the spacecraft operations using eXtensible Markup Language(XML) for command transmission. Ground track display shows the satellite ground trace and mission activities on a digitized world map with zoom capability.

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

A Study on the Landscape Planning Evaluation on Apartment Artificial Ground (아파트 단지 인공지반의 계획적 평가에 관한 연구)

  • 김유일;오정학;김인혜;윤홍범
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.297-311
    • /
    • 1998
  • Landscaping on artificial ground is currently served as a means to imposing a greenery benefit on high-density and high-rise apartment sites. It functions as a sub-hierarchy in apartment planning such as ornamental element from the past. Major parking space tends to be allocated on the basement area in response to the required parking regulation. Therefore, competitive relatioinship between the parking and greenery space I limited outdoor of apartments leads to the development planning strategy and technology of artificial ground. This study aims at evaluating landscape planning on artificial ground of apartment complex through several approaches such as site survey, plan drawing analysis, and interview with related field experts. 15 survey apartment sites including Bundang Model, Shindaebang-dong, Pyoungchon Hyundai Apartments have been selected for conducting the research. Main results of this study are summarized below : First, scattering allocation of artificial ground between apartment building units is a dominant plan layout type among the survey sites. Even though unifying allocation type has an advantage to maximize underground parking space, it has a difficulty in maintaining proper soil ground base for nurturing plants. Therefore, underground parking space should be planned by unifying allocation type placed separately from apartment units. This plan type can provide a balanced planting between soil and artificial ground on surface level. Second, It is strongly recommended to integrate the whole planting base which involves architectural structure, drainage, and water proofing above the planting design. When considering that process as a professional subject dealing with natural material such as trees and shrubs, those tasks should be directed by landscape architectural divison and landscape architect. And planting area for artificial ground has to be specified in initial phase of architectural design. This step provides an opportunity to make a proper decision on structural load, drainage, and water proof design as an integrated part of the management.

  • PDF

A Study on Automation of Image Collection Planning

  • Han, Jae-Joong;Jung, Kyung-Jin;Choi, Jae-Seung;Kwak, Sung-Hee;Kim, Moong-Yu
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.743-752
    • /
    • 2011
  • One of main concerns of operators of the Earth observation satellite is taking images as many as possible under the constraints of satellite resources during fixed period. In order to achieve this goal, satellite operators are strongly required to generate the optimized image collection plans, and it is a very time consuming process to achieve an optimized image collection plan when it is done by manual. This paper suggests automation of image collection planning based on the dynamic programming algorithm to reduce the time required for image collection planning. The validity of the proposed method is tested using operating satellite system and the result is given in this paper.

Developments of a Path Planning Algorithm and Simulator for Unmanned Ground Vehicle (무인자율차량을 위한 경로계획 알고리즘 및 시뮬레이터 개발)

  • Kim, Sang-Gyum;Kim, Sung-Gyun;Lee, Yong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • A major concern for Autonomous Military Robot in the rough terrain is the problem of moving robot from an initial configuration to goal configuration. In this paper, We generate a local path to looking for the best route to move an goal configuration while avoiding known obstacle from world model, not violating the mobility constraints of robot. Trough a Simulator for Unmanned Autonomous Vehicle, We can simulate a traversability of unmanned autonomous vehicle based on steering, acceleration, braking command obtained from local path planning.

Motion Planning Algorithms for Kinematically Redundant Manipulator Not Fixed to the Ground (지면에 고정되어 있지 않은 여유자유도 매니플래이터의 운동계획 알고리즘)

  • 유동수;소병록;김희국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.869-877
    • /
    • 2004
  • This paper deals with motion planning algorithm for kinematically redundant manipulators that are not fixed to the ground. Differently from usual redundant manipulators fixed to the ground, the stability issue should be taken into account to prevent the robot from falling down. The typical ZMP equation, which is employed in human walking, will be employed to evaluate the stability. This work proposes a feed forward ZMP planning algorithm. The algorithm embeds the 'ZMP equations' indirectly into the kinematics of the kinematic model of a manipulator via a ZMP stability index The kinematic self motion of the redundant manipulator drives the system in such a way to keep or plan the ZHP at the desired position of the footprint. A sequential redundancy resolution algorithm exploiting the remaining kinematic redundancy is also proposed to enhance the performances of joint limit index and manipulability. In addition, the case exerted by external forces is taken into account. Through simulation for a 5 DOF redundant robot model, feasibility of the proposed algorithms is verified. Lastly, usual applications of the proposed kinematic model are discussed.

Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle (무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획)

  • Lee, Sang-Hoon;Chun, Chang-Mook;Kwon, Tae-Bum;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

Modified $A^*$ - Local Path Planning Method using Directional Velocity Grid Map for Unmanned Ground Vehicle (Modified $A^*$ - 방향별 속도지도를 활용한 무인차량의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.327-334
    • /
    • 2011
  • It is necessary that UGV(Unmanned Ground Vehicle) should generate a real-time travesability index map by analyzing raw terrain information to travel autonomously tough terrain which has various slope and roughness values. In this paper, we propose a local path planning method, $MA^*$(Modified $A^*$) algorithm, using DVGM (Directional Velocity Grid Map) for unmanned ground vehicle. We also present a path optimization algorithm and a path smoothing algorithm which regenerate a pre-planned local path by $MA^*$ algorithm into the reasonable local path considering the mobility of UGV. Field test is conducted with UGV in order to verify the performance of local path planning method using DVGM. The local path planned by $MA^*$ is compared with the result of $A^*$ to verify the safety and optimality of proposed algorithm.

A Method to Determine the Weights for Mission Type based Global Path Planning (임무유형 기반 전역경로계획을 위한 가중치 결정방법)

  • Park, Won-Ik;Lee, Ho-Joo;Kim, Do-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.711-717
    • /
    • 2014
  • Global path planning for autonomous driving of unmanned ground vehicle is essential. When setting global path planning, its accuracy and effectiveness is increased if useful information such as terrain type of driving route has been reflected on global path planning. As a method to reflect the terrain type, there is a method to perform global path planning by applying the weight to each terrain type. At this time, how to assign appropriate weights corresponding to the terrain type is more important than anything. In this paper, we proposed a method to determine the weight for terrain type that may affect the results of global path planning. Moreover, we presented effective operation method and design results(GUI) to check the possibility of the use of the proposed method.

Satellite Ground Track Display on a Digitized World Map for the KOMPSAT-2 Mission Operations

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.246-249
    • /
    • 2005
  • Satellite ground track display computer program is designed and implemented for the KOMPSAT-2 mission operations. Digitized world map and detailed Korean map is realized with zoom and pan capability. The program supports real-time ground trace and off-line satellite image planning on the world map. Satellite mission timeline is also displayed with the satellite ground track for the visualized mission operations. In this paper, the satellite ground track display is described in the aspect of the functional requirements, design, and implementation.

  • PDF